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Abstract—This paper establishes the following results con-
cerning the estimation of the power spectrum of a single,
deterministic, infinitely long signal. a) If ^ is the signal’s power
spectral density, correlogram spectral estimates obtained from
increasingly longer signal segments tend to ^ ^ 2 in the
1-norm, where ^ is the Fourier transform of the window used to

generate the estimates. b) The 1-norm of ^ ^ ^ 2 can
be made arbitrarily small by an appropriate choice of window.
It is further shown that the accuracy of the spectral estimates
generated by a given window is related to a newly introduced
function, termed the windowing error kernel and that this func-
tion yields bounds on the asymptotic error of the estimates. As
an example, correlogram spectral estimates are used to analyze
spectral regrowth in an amplifier.

Index Terms—Estimation, Fourier transforms, nonlinear distor-
tion, numerical analysis, spectral analysis, windowing.

I. INTRODUCTION

THE estimation of the power spectrum of deterministic or
stochastic signals has been the object of intense research

for over a century, although the focus has been almost entirely
on spectral analysis of stochastic processes. The periodogram
was probably the first method to be developed for this purpose
[1]: it generates a spectral estimate based on the Fourier trans-
form of segments of the signal being analyzed. The correlo-
gram method was developed later [2]: its spectral estimates are
obtained from the Fourier transform of approximations to the
signal’s autocorrelation function.

In addition to the periodogram and the correlogram, other
approaches to spectral estimation exist, which do not rely
directly on the Fourier transform. For instance, so-called para-
metric methods are based on specific models for the signal
being analyzed and/or the system that generated it. Typically,
the models contain parameters whose values are estimated
from the available signal data. A power spectrum estimate is
then obtained, based on the model and the computed parameter
values. With a correct choice of model, parametric methods can
generate more accurate spectral estimates than the periodogram
or the correlogram, especially if the signal data is available only
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over a short time interval [3]. On the other hand, completely
erroneous spectral estimates can be obtained from an incorrect
choice of the model.

The particular application that prompted the research de-
scribed in this paper is the estimation of regrowth in signal
spectra caused by nonlinearities in power amplifiers and other
components of telecommunications systems. Virtually all
modulation schemes used in modern digital communications
generate signals whose power spectra have a continuous
component [4]. Simulating the effects of nonlinearities on
signal spectra provides valuable information in the design of
communications circuit, and specialized algorithms have been
devised for this purpose [5], [6]. The results of the simulations,
however, are time-domain signals; their power spectra must
then be computed using appropriate techniques. Virtually all
parametric spectral estimation methods are based on linear
system models, and are therefore unsuited for this particular
application. For this reason, this paper focuses on one of the
methods based on the Fourier transform: the correlogram.

The specific problem being examined is the estimation of the
power spectrum of a single continuous-time or discrete-time
signal. No assumption is made about the signal being a real-
ization of a particular stochastic process. It is shown that, if the
signal’s power spectrum is continuous, correlogram estimates
can theoretically approximate it with an accuracy that depends
only on the window used, provided that sufficiently long signal
segments are available. It is also shown that, under broad con-
ditions, the window can be chosen to make the difference be-
tween the correlogram estimates and the signal’s power spec-
tral density arbitrarily small. This means that, if sufficiently long
signal segments and an appropriate window are used, a contin-
uous power spectrum can theoretically be approximated by cor-
relogram estimates with arbitrary accuracy. Finally, it is shown
that the accuracy of a window can be measured in terms of a
function associated to it, which is termed the windowing error
kernel. This function provides a way to make both qualitative
and quantitative comparisons between windows, in terms of the
error that they introduce in spectral estimates.

Section II explains the notation used throughout this paper.
Section III contains the formal mathematical definition of the
power spectrum of a signal, and Section IV proves a number of
properties regarding correlogram spectral estimates. Section V
examines the effect of windows on the accuracy of spectral esti-
mates, introduces the windowing error kernel associated with a
given window, and compares a number of commonly used win-
dows in terms of their accuracy. Finally, Section VI presents a
few numerical examples illustrating the theoretical results ob-
tained in the previous sections.

1053-587X/$25.00 © 2007 IEEE
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II. NOTATION

Most of the results presented in this paper apply both to
continuous-time and discrete-time signals, and the notation has
been selected to accommodate either case. Thus, the domain of
the time variable is denoted by , with the understanding that

for continuous-time signals, or for discrete-time
signals. This choice of notation is motivated by the fact that
both and are locally compact, commutative topological
groups [7]. Accordingly, denotes the integral of with
respect to the Haar measure on . If , this is the usual
Lebesgue integral; if , the Haar measure of is the
counting measure, and the integral is in fact a summation:

. In either case, denotes convolution

while is the Fourier transform of

denotes the dual group of [7, p. 6], that is, the domain
of the frequency variable in the Fourier transform operation.
Therefore, in the continuous-time case, ; in the discrete-
time case, can be identified with the interval .
denotes the integral of with respect to the Haar measure on

, which, as before, is the ordinary Lebesgue integral if
. In the discrete-time case, is the Lebesgue integral

of the periodic function of period that coincides with on
. Consequently, in the discrete-time case the convolution

operation

must be understood as the circular convolution of two periodic
functions of period . In either case, denotes the inverse
Fourier transform operation:

, with and or , denotes the
space of all functions that satisfy the condition

, where the integral is evaluated with respect to the Haar mea-
sure on . is a Banach space with the norm

.

III. POWER SPECTRUM

Let be a complex-valued, bounded, continuous-time or dis-
crete-time signal with the following properties:

• the limit:

exists for all ;

• is a continuous function of (if , this condition
is satisfied automatically).

It was shown by Wiener [8] that is a positive-definite func-
tion. A theorem by Bochner [7, p. 19] states that a continuous,
positive-definite function on can be expressed in a unique way
as the inverse Fourier transform of a bounded, positive measure

on , as follows:

is an element of , the space of bounded, regular Borel
measures on : following Wiener’s definition, it will be re-
ferred to as the power spectrum of . As the inverse Fourier
transform of a bounded measure, is an element of , the
Fourier–Stieltjes algebra of (see the Appendix).

As an example, consider the following signal: .
Then, , and , where
is Dirac’s atomic measure located at . More generally,
it is fairly straightforward to verify that the power spectrum of

is .
Based on the properties of , it is possible to identify several

types of power spectra. For example, a measure is discrete if it
can be expressed as the sum of a finite or countable number
of Dirac atomic measures [7, p. 266]. Accordingly, a signal
is said to have a discrete spectrum if is a discrete measure.
All quasi-periodic signals have discrete spectra, as shown by the
example given above.

A measure is absolutely continuous with respect to the
Lebesgue measure on if there exists such that

. In such case

i.e., is the inverse Fourier transform of . A signal is said
to have a continuous spectrum if is absolutely continuous
with respect to the Lebesgue measure on . In this paper,
will be referred to as the power spectral density (PSD) of . It
follows from this definition that the PSD of a signal is always
a real-valued, non-negative function belonging to .1 Note
that has a continuous spectrum if and only if , the
Fourier algebra of (see the Appendix).

In the most general case, the power spectrum of a signal may
contain both discrete and continuous components. Signals of
this type are said to have a mixed spectrum.

IV. CORRELOGRAM SPECTRAL ESTIMATION

Broadly speaking, correlogram estimates of a signal’s power
spectrum are obtained by taking a finite-length segment of the
signal and computing the Fourier transform of the segment’s
autocorrelation function. More precisely, let be a signal sat-
isfying the assumptions stated at the beginning of the previous

1In the literature the terms “power spectrum” and “power spectral density”
are often used interchangeably. The distinction drawn in this paper mirrors the
difference between “probability measure” and “probability density function” in
probability theory.
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section. Assuming that the values of are available for time in-
tervals of arbitrary length, let be an increasing sequence
of positive numbers such that . Define

where . Clearly, ; hence
and . Consequently, is a posi-

tive-definite function in . This section and the next prove
a number of results showing that, under fairly broad conditions,
the sequence can be used to generate increasingly accu-
rate estimates of the power spectrum of . The first step in this
direction is the result established in the following theorem.

Theorem 1 [8]: The sequence converges pointwise to
, that is

Proof: Since and , it is
sufficient to prove the claim for . In such case

Since , the following inequality applies:

Therefore

In light of this theorem, it might be surmised that the sequence
converges in some way to the power spectrum of . This

is indeed the case: it can be shown that is the distributional
limit of [9]. This type of convergence, however, is not too
useful for computational purposes. To illustrate this point, con-
sider the sequence . Although this sequence
converges to the constant function 1/2 in the sense of distribu-
tions, it does not provide numerically convenient estimates of
a flat spectrum. For computational purposes, a more stringent
type of convergence is needed: for example, convergence in the
norm of . Additional conditions, however, are needed to
ensure that converges in norm to .

To understand why, note that ; this holds true
regardless of the type of spectrum of . Since is a norm-
closed subspace of cannot converge to in norm
if , i.e., if does not have a continuous spectrum.
Even if , however, norm convergence of to

cannot be guaranteed: to the author’s best knowledge, to date
no formal proof of this fact exists, even for particular classes
of signals. On the other hand, it will be proven below that the
application of a fixed-length window to the sequence has
the effect of generating norm-convergent spectral estimates.

A window is a real-valued function that satisfies the fol-
lowing conditions:

1) ;
2) ;
3) has finite length, i.e., there exists such that

for ;
4) or, equivalently, .

The last requirement in the list above merits an explanation.
The condition is needed to satisfy the hypotheses
of Theorem 6 in the Appendix, which is used in the proof of
Theorem 2 below and of Theorem 3 in Section V. In the discrete-
time case , the Fourier transform of any finite-length
signal belongs to . Therefore, in this case the condition

is automatically satisfied, because of the requirement
that must have finite length. In the continuous-time case, this
is no longer true: for example, the rectangular window is not
an element of . On the other hand, the Fourier transform
of any finite-length signal that is sufficiently smooth belongs to

; for example, both the triangular window

and the Hanning window

are elements of . So even in the continuous-time case, it
is not overly restrictive to insist that a window must belong to

.
The application of a fixed-length window to yields ,

whose Fourier transform is . The significance of The-
orem 2 below is that, although may not converge to in
norm, converges in norm to . Note that,
if does not have a continuous spectrum, . Nev-
ertheless, is always an element of , because

, and is an ideal of . In nonmathemat-
ical terms, this means that is always a continuous
spectrum, regardless of whether itself is continuous or not.2

Note also that implies , and
that , because: . Theorem 2
can then be stated formally as follows.

Theorem 2: Let . Then, converges to
in the norm of . Equivalently, converges to

in the norm of .
Proof: Note that is a positive-definite function for all

values of ; therefore, . It follows that

Being a convergent sequence, must be bounded, i.e.,
there exists such that for all . By Lemma
1 in the Appendix, . Consequently,

2Broadly speaking, this explains why the application of a window to a signal
has the effect of spreading spectral lines over a continuous range of frequencies.
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satisfies all the hypotheses of Theorem 6, and the claim fol-
lows.

V. WINDOWING ERROR

Theorem 2 states that converges to in
the norm of . Consequently, the accuracy of the spectral
estimates that can be obtained with a given window is ultimately
limited by the difference between and . For this
reason, the quantity will be referred to as the
windowing error.

The observation above prompts two questions: 1) Can be
chosen to make the norm of the windowing error arbitrarily
small? and 2) Is it possible to estimate in some way the error as-
sociated with a given window (e.g., to provide an upper bound
on the norm of the windowing error)? These two questions are
addressed in this section.

As noted earlier, is always a continuous spectrum,
even if itself is not. Since is a norm-closed subspace
of , it follows that cannot be made
arbitrarily small if , i.e., if is not a continuous
spectrum. On the other hand, if is a continuous spectrum, the
following theorem shows that it is possible to choose so as
to make the -norm of the windowing error arbitrarily small.
Recall that, if is a continuous spectrum, then:
for some .

Theorem 3: Let be a sequence of positive definite win-
dows such that: . Then

for all .
Proof: Since is positive definite, .

Moreover, and: . Consequently satis-
fies the hypotheses of Lemma 1 and Theorem 6 in the Appendix.
It follows that: or, equivalently,

.
This theorem ensures that the windowing error can be made

arbitrarily small simply by increasing the length of the window.
The requirement that the window should be positive definite,
however, might prove to be rather restrictive, because many
commonly used windows do not satisfy it. It will be shown later,
however, that this condition can effectively be dropped, at least
in the discrete time case.

Theorem 3 does not provide an answer to the question of how
to quantify the windowing error associated with a specific spec-
tral estimate, i.e., the value of . It will be
shown next that an upper bound on this error can be obtained for
continuous spectra , under the additional condi-
tion that is a function of bounded variation; it can be safely
assumed that this condition is always satisfied in practical appli-
cations. The bound on the windowing error involves a function,
denoted by , that is associated with the window being used,
and which will be referred to as the windowing error kernel.

In the continuous-time case, the windowing error kernel is
defined as

(1)

In the discrete-time case, is that periodic function of period
whose values are given by (1) for . Recall that,

by definition, must be a real-valued, even function of ;
consequently, is also a real-valued, even function of . It
follows that is an odd function of , that is

It is also obvious that is differentiable everywhere except at
(in the continuous-time case) or at (in the

discrete-time case) and that

An expression of the windowing error in terms of is es-
tablished by the theorem that follows.

Theorem 4: Let be a bounded-variation function
of . Then the following relationship holds for all values of
where is continuous:

(2)

where , and this integral
is a Riemann–Stieltjes integral.

Proof: Let in the continuous-time case, or
in the discrete-time case. In either case, is the only point
in where is not differentiable. Moreover

Therefore: . Then:

Integration by parts yields

(3)

Similarly

(4)
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Adding (3) and (4) proves the claim.
As a corollary to Theorem 4, it should be noted that (2) holds

almost everywhere in , because the points of discontinuity of
a bounded-variation function form a set of measure zero.3 This
means that the following identity is valid in

(5)

Equation (5) can be used to obtain various types of bounds on
the windowing error. For instance, the inequality

that holds for the convolution of two measures yields

(6)

In the equation above, represents the norm of the deriva-
tive of , regarded as a measure, which coincides with the total
variation of . In the type of PSDs that occur in practice, it is
reasonable to assume that the total variation of is of the same
order of magnitude as the largest value of .

If is differentiable, i.e., , and ,
the inequality [10, pp. 396–397] is also
useful to establish a bound on the windowing error. In particular,
setting yields

(7)

Therefore the value of limits both ,
which is the maximum possible error at any particular fre-
quency, and , which is the -norm of the
total error over the entire range of possible frequencies. For this
reason, can be used as an approximate measure of the
relative error introduced in spectral estimates by a particular
window.

The windowing error kernel can also be used to establish the-
oretical results. As an example of a theoretical application, the
inequality in (6) will now be used to prove that, in the discrete-
time case, the -norm of the windowing error can be made
arbitrarily small under less restrictive conditions than those as-
sumed in Theorem 3.

In preparation for this proof, note that implies
that is a bounded function of . Therefore, in the discrete-
time case , and Hölder’s inequality
yields

(8)

Moreover, can be written explicitly as

(9)

(note that the summations in the equations above have only a
finite number of nonzero terms). Since , the
Plancherel theorem implies that is the Fourier transform of

3This follows, for instance, from Theorems (8.19) and (17.16) in [10].

some . It is fairly straightforward to verify by direct
calculation that

Then Parseval’s equality can be used to
establish the following identity4:

Theorem 5: Let be a sequence of discrete-time win-
dows such that . Then

Consequently, if is a bounded-variation function of , then

Proof: Given an arbitrary , there exists a positive
integer such that: . By as-
sumption, there is also a positive index such that
implies:

for . Note also that implies
for all values of and . Therefore, the following inequalities

hold for

i.e., . Then, (8) and Parseval’s equality imply

This shows that . To complete the proof,
note that a bounded-variation function is necessarily bounded.
Therefore, , and the second part of the claim
follows from Theorem 4 and the inequality in (6).

The windowing error kernel can also be used to obtain both
qualitative and quantitative information about the error affecting
estimates of the PSD of continuous-spectrum signals. As an
illustrative example, consider the five windows listed below,

4Set: w(0) = 1; w(k) = 0 for k 6= 0.
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which are among those most frequently mentioned in the lit-
erature [11], [12]:

Rectangular:

Bartlett:

Hanning:

Hamming:

Blackman:

where . The corresponding windowing error
kernels can be computed directly from (9), which can also be
written as

Figs. 1 and 2 show the graphs of , on loga-
rithmic scale, for the five windows listed above, with .
A qualitative assessment of the relative accuracy of the various
windows can be made by comparing the rate at which
decays as increases. For example, an inspection of Fig. 1
leads to the conclusion that, despite the absence of oscillations
in its error kernel, the Bartlett window is not likely to produce
more accurate results than the rectangular window, because the
graphs corresponding to those two windows decay at very sim-
ilar rates. On the other hand, the Hamming window’s kernel falls
20 dB below its peak value at , indicating that two fea-
tures (e.g., two peaks) in that are separated by a factor of
100 or less in amplitude are likely to be visible in the spectral es-
timate, provided that their distance is at least 10% of the Nyquist
frequency. The graph of the Hamming window, however, never
decreases below a floor of approximately 25 dB, which indi-
cates that this window’s dynamic range is at most 25 dB, and
perhaps less. On the other hand, the amplitudes of the sidelobes
of the Hanning and Blackman windows keep decreasing well
below those of the three other windows, an indication that they
can achieve better dynamic range.

Table I shows the values of for the five win-
dows listed above and three different window lengths

. For each window and window length,
three numbers are reported. The first is an approximate
value of , computed by numerical quadrature using
the nag_1d_quad_gen (d01ajc) routine of the NAG
library [13], with . The
second number is the ratio , expressed as a percentage,
where is the first zero of . The third is the ratio

, expressed as a percentage:
a value close to 100% indicates that provides a very good

Fig. 1. Normalized windowing error kernel, N = 32 (L = 65).

Fig. 2. Normalized windowing error kernel, N = 32 (L = 65).

approximation to the resolution of the window. Table I provides
the basis for a quantitative comparison of the global accuracy
of the various windows. For example, the values of
indicate that, at least in some cases, spectral estimates obtained
using the Bartlett window could be less accurate than estimates
obtained with the rectangular window. On the other hand, the
accuracy of the Hanning and Hamming windows, as measured
by , is effectively the same. In fact, among the five win-
dows examined here the Hanning window appears to offer the
best overall performance, when global error bound, resolution,
and dynamic range are all taken into account.

VI. NUMERICAL EXAMPLES

As mentioned in the Introduction, one of the main advantages
of correlogram-based spectral estimates is that they do not rely
on any specific model for the signal or the system that gener-
ated it. This makes the correlogram particularly suited for the
spectral analysis of signals in applications where such models
are either not available, or too inaccurate or too complex to be
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TABLE I
SELECTED WINDOWING ERROR KERNEL PERFORMANCE INDICATORS

practically useful: this is the case, for instance, in digital com-
munications systems. As an example, in this section, correlo-
gram spectral analysis is used to analyze the effect of system
nonlinearities on the power spectrum of a typical digital com-
munications signal.

In a communications system, nonlinear effects are usually
most pronounced in power amplifiers, where signal levels reach
their highest values. The amplifier’s nonlinear behavior can
broaden the power spectrum of the output signal, a phenom-
enon known as spectral regrowth, which, in turn, can cause
interference between signals occupying neighboring frequency
bands (adjacent channel interference). For this reason, the
ability to obtain accurate a priori estimates of the amount of
spectral regrowth can be extremely valuable in the design phase
of a power amplifier [14].

Methods to estimate spectral regrowth have been the object of
intense research. In many cases, it is assumed that the amplifier
can be adequately described by a memoryless or quasi-memo-
ryless polynomial model [15], [16]. Other approaches [17] rely
on Volterra series expansions, which are still polynomial in na-
ture but can be used to represent systems with memory. Because
of their limitations, however, none of these models can be used
in practice to quantify spectral regrowth in an actual power am-
plifier. Simple (i.e., low-order) polynomial models are almost
never sufficiently accurate, and higher order models are too un-
wieldy to be practically useful. Moreover, the assumption that
the amplifier can be described as a quasi-memoryless system
is often unrealistic, especially at the high frequencies used for
wireless digital communications. Currently, simulation is the
best and most reliable way to predict the behavior of amplifiers
and other electronic circuits with reasonable accuracy [18]. For
this reason, circuit simulators are heavily relied upon as verifica-
tion tools in electronic circuit design. In the example described
below, simulation and correlogram-based spectral analysis are
used to analyze spectral regrowth in the output signal of a MOS
amplifier.

Fig. 3 shows the amplifier’s schematic diagram; the graph
showing the amplifier’s input-output gain curve, which was ob-
tained through simulation, has the origin located at the DC op-
erating point. The input signals applied to the amplifier were
trains of finite-length, nonoverlapping pulses given by the fol-
lowing expression:

(10)

Fig. 3. MOS amplifier and its input–output gain curve.

where is a sequence of coefficients satisfying the following
relationships:

These signals encode pseudorandom bit streams and are
common in digital communications systems. It can be shown
that their power spectrum is continuous, and their theoretical
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PSD can be expressed in terms of [4]. For this example,
raised cosine pulses were used, as follows:

with s, corresponding to a symbol frequency of
200 kHz.

A pseudorandom number generator was used to obtain a se-
quence containing approximately 6 500 values, and stan-
dard time-domain circuit simulation techniques were used to
compute numerically the amplifier’s output signal. In order to
limit aliasing effects, the value of the integration timestep was
set to 62.5 ns, which generated slightly over 524 000 signal sam-
ples. The CPU time necessary to run each simulation ranged
between 350 and 500 s on a Sun Ultra 60 workstation running
Solaris 8.

After downsampling by a factor of four, correlogram esti-
mates of the PSD’s of the input and output signals were com-
puted using a Blackman window with . The CPU time
needed to compute the estimates was a few percent of the sim-
ulation time. The data in Table I indicates that, for this window,
the value of decreases in a manner that is approximately
inversely proportional to the window length, and extrapolating
the data to yields . Using this
number as an approximate measure of the windowing error, the
spectral estimates generated by this window can be expected
to have a relative accuracy on the order of one percent or less,
which is more than adequate for this particular application.

For comparison purposes, a different estimate of the output
signal’s PSD was obtained in the following way. If the amplifier
can be modeled as a memoryless system, , and if is
an odd function, i.e., , then it is easy to verify
that the input signal defined in (10) generates an output of the
same type, as follows:

where . Then, the theoretical expression for
is [4, p. 194]

(11)

For a given , the corresponding was obtained through sim-
ulation, and was computed from it using a numerical approx-
imation of the Fourier integral.

Fig. 4 shows the PSDs of the input and output signals, ob-
tained from correlogram estimates as explained above, with the
amplitude of the input pulses (i.e., the value of ) set to 10 mV.
In this case, because the input signal is comparatively small, the
amplifier is operating essentially linearly, and the output PSD is
just a scaled replica of the input PSD. A comparison with the
PSD estimate obtained from (11) is shown in Fig. 5: because
of the amplifier’s good linearity at these signal levels, there is a
substantial agreement between the two estimates.

Fig. 4. Correlogram estimates of the PSD of the amplifier’s input and output
signals, A = 10 mV.

Fig. 5. Estimates of the amplifier’s output PSD obtained from the correlogram
and (11), A = 10 mV.

A similar comparison, with the amplitude of the input pulses
increased to 200 mV is shown in Fig. 6. No obvious warping
of the output PSD due to nonlinearities in the amplifier can be
observed yet, but spikes can be detected at 200 kHz (barely)
and more clearly at 400 kHz. These spikes indicate the pres-
ence of periodic components in the output signal at multiples of
the symbol frequency and are due to the fact that, at these signal
levels, the amplifier’s gain curve can no longer be regarded as
symmetric with respect to the DC operating point (i.e., the origin
in Fig. 3). This lack of symmetry means that the Taylor expan-
sions of the system’s input–output relationship contains even
powers of , as follows:

It can be readily verified that, for the type of input signals given
by (10), even-order powers of in the equation above create pe-
riodic components in the output. The comparison with the spec-
tral estimate obtained from (11) is shown in Fig. 7. It can be seen
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Fig. 6. Correlogram estimates of the PSD of the amplifier’s input and output
signals, A = 200 mV.

Fig. 7. Estimates of the amplifier’s output PSD obtained from the correlogram
and (11), A = 200 mV.

that there is still a generally good agreement between the two es-
timates, although the latter lacks the spikes at 200 and 400 kHz.
The reason is that (11) assumes that the system’s input–output
relationship is an odd function and, consequently, it cannot pre-
dict phenomena caused by deviations from this assumption.

Spectral regrowth in the output PSD caused by the amplifier’s
nonlinear behavior becomes manifest when the amplitude of the
input pulses is further increased to 500 mV, as can be seen in
Fig. 8. Narrowing of the main lobe and widening of the sec-
ondary lobes can readily be observed, together with the presence
of periodic components at multiples of the symbol frequency,
which now reach the upper limit of the frequency range shown
in the graph. A further loss of accuracy in the spectral estimate
obtained from (11), which is compared with the correlogram
estimate in Fig. 9, can also be observed. While there are no no-
ticeable differences between the two graphs on the main lobe,
the amplitudes of the secondary lobes are clearly overestimated,

Fig. 8. Correlogram estimates of the PSD of the amplifier’s input and output
signals, A = 500 mV.

Fig. 9. Estimates of the amplifier’s output PSD obtained from the correlogram
and (11), A = 500 mV.

and, as in the previous case, the periodic components at multi-
ples of the symbol frequency are completely absent.

These results illustrate the advantages of using the correlo-
gram to obtain spectral estimates in applications where nonlin-
earities are present, the numerical accuracy of the estimates is
an important requirement, and arbitrarily long signal segments
can be obtained without too much difficulty (e.g., by simula-
tion, as in this example). On the one hand, the need for accu-
racy usually requires the use of complex models to describe the
system that generates the signals being analyzed. On the other
hand, the very complexity of the system equations effectively
rules out any hope of obtaining analytical models for the signal
spectra that are equally accurate, yet not so unwieldy as to be
unusable for actual numerical calculations. In contrast, numer-
ical estimates of a signal’s PSD based on the correlogram can
be computed in a straightforward manner, and the theoretical
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results presented in the previous sections ensure that, in prin-
ciple, arbitrarily accurate estimates can be obtained with an ap-
propriate choice of the window and of the length of the signal
segment.

VII. CONCLUSION

The results established in this paper can be summarized as
follows. Windowed correlogram estimates generated by signal
segments of increasing length converge in the -norm to the
signal’s windowed PSD (i.e., ). The -norm of the
windowing error, i.e., the difference between the exact and win-
dowed PSDs, can be made arbitrarily small by a suitable choice
of window (Theorems 3 and 5). It follows that, in principle,
the correlogram can estimate the PSD of a continuous-spec-
trum signal with arbitrary accuracy, provided that an appropriate
window and sufficiently long signal segments are used.

It was also shown that bounds on the asymptotic error of
the estimates generated by a given window (i.e., the quantity

) can be obtained from the -norm of the win-
dowing error kernel. Since this kernel can always be computed
explicitly from the window coefficients, it provides a way to
compare the accuracy of different windows in both qualitative
and quantitative terms. As an illustration, selected performance
parameters related to the resolution and overall accuracy of five
commonly used windows have been computed from the corre-
sponding error kernels. These calculations have led to the con-
clusion that, for example, the Hanning window should generate
more accurate estimates of the PSD of a continuous-spectrum
signal than the Bartlett window.

Thus, if a correlogram-based estimate of a signal PSD is
needed, the windowing error kernel can be used as a guide
to select the type and length of the window, based on consid-
erations such as relative accuracy, frequency resolution, and
so on. After a window has been selected, signal segments of
increasing length can be used to evaluate the correlogram and
generate corresponding spectral estimates, until the difference
between successive estimates becomes negligible.

Although only deterministic signals were considered in this
paper, some of the results presented here are directly appli-
cable to the spectral analysis of stochastic processes. For ex-
ample, given a discrete-time stationary process with autocorre-
lation function , it is shown in [11, p. 745] that the expected
value of a windowed correlogram spectral estimator is

Therefore, the bias of this estimator is , and the
results presented in Section V can be used directly to place an
upper bound on it.

In conclusion, among the many spectral analysis techniques
that are now available, methods based on the Fourier transform
remain useful in many applications, particularly those in which
signals can be observed over arbitrarily long time intervals, and
little or no a priori knowledge is available about the type of
signals or the systems that generated them. In those cases where
signal segments of sufficient length are not available, additional
information about the signal is necessary to establish theoretical
bounds on the accuracy of spectral estimates obtained from the
correlogram. Specific expressions for such bounds, if they can

be derived, will almost certainly be highly dependent on what is
known about the types of signals under analysis or the systems
that generated them. On the other hand, other techniques (e.g.,
parametric methods) might be better suited for spectral analysis
when such information is available.

APPENDIX

A. Fourier and Fourier–Stieltjes Algebras

Let denote the set of all complex-valued, bounded,
regular Borel measures on . It is possible to define a convolu-
tion operation between two measures [7, p. 13]:
the result, which is still an element of , will be denoted
by . Equipped with convolution and with the usual vector
space operations, is a complex Banach algebra under the
norm defined by , where is the total variation
of [7], [10].

A measure is absolutely continuous with respect
to the Lebesgue measure on if there exists such
that

for all measurable sets . In such case, the following
equality holds: . The notation will be
used as a shorthand to denote the relationship between an ab-
solutely continuous measure and the corresponding
function .

It can be shown that the convolution of two absolutely con-
tinuous measures corresponds to the usual convolution opera-
tion between functions. In other words, if and

, then . Therefore,
can be identified with the set of absolutely continuous

measures on ; with this identification, becomes a subal-
gebra of . In fact, is a norm-closed ideal of
[7, p. 16]. This means that the result of the convolution between
an element of and any other measure in is always
an element of , that is

In particular, since the convolution of absolutely continuous
measures is identical to function convolution, this implies that

is closed under convolution

Let denote the set of all complex-valued functions that
can be expressed as the inverse Fourier transform of a measure
in . In other words, if

for some . It is straightforward to verify that all
the elements of are bounded, continuous (in fact, uni-
formly continuous) functions. Furthermore, convolution of
measures in is mapped by the inverse Fourier transform
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into a product of functions in . In other words, if
, then . It

follows that , i.e., is a
function algebra.

A norm can be defined on in the following way:

Note that . Under this norm, is a Banach
algebra: it is referred to as the Fourier–Stieltjes algebra of
[19].

The positive-definite functions in are the inverse
Fourier transforms of positive measures in . Hence, if

is positive definite, then

Since , it follows that .
This equality, however, does not generally hold for elements of

that are not positive definite.
Let denote the set of all complex-valued functions that

are the inverse Fourier transform of a function in , as fol-
lows:

Since is a subspace of is a subspace of
. Moreover, as noted earlier, if , then
. Therefore, if , then .

is closely related to . If , then
. Therefore, , and this implies
. Conversely, every function in can be

written (in many different ways) as the product of two func-
tions in . This implies that every function in can
be written (again, in many different ways) as the convolution of
two functions in . Therefore, can also be defined
as the set of all functions that can be written as the convolution
of two functions in .

Finally, the product of two functions in is still an el-
ement of . This follows from the fact, mentioned earlier,
that is closed under convolution. Therefore, is a
Banach subalgebra (in fact, an ideal) of : it is referred to
as the Fourier algebra of [19].

Norm convergence in is equivalent to norm conver-
gence in . More precisely, let ,
and let be a sequence in . Then

This follows immediately from the definition of the norm in
. Similarly, if and , then

Since every function in is bounded, is a sub-
space of , which is the dual space of [10]. There-
fore, a weak-* topology exists on , induced by duality
with . In this topology, a sequence of functions con-
verges to a function if and only if

for every . The notation

will be used to denote convergence in the weak-* topology.
Weak-* convergence in is closely related to pointwise
convergence, as the following lemma shows.

Lemma 1: Let be a sequence in that convergences
pointwise to a function , that is

Assume that is bounded in the norm of , i.e., there
exists such that for all . Then

Proof: Let . The inequality
implies . Hence

Since , Lebesgue’s dominated convergence the-
orem [10], applied to the sequence , yields the following
equality:

Because this is true for every , it follows that
converges to in the weak-* topology of .

The next theorem establishes a result that is, in some respect,
unexpected, because it is specific to and cannot generally
be extended to other function algebras (e.g., ).

Theorem 6 [20, Theorem A]: Let be the weak-*
limit of a sequence

and assume that: . Then

Theorems 2 and 3 in the main body of the paper depend in an
essential way on this theorem, whose proof can be found in [20].

REFERENCES

[1] A. Schuster, “On the investigation of hidden periodicities with applica-
tion to a supposed 26 day period of metereological phenomena,” Ter-
restrial Magnetism, vol. 3, pp. 13–41, 1898.

[2] R. B. Blackman and J. W. Tukey, The Measurement of Power Spectra
From the Point of View of Communications Engineering. New York:
Dover, 1959.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 4, 2009 at 14:37 from IEEE Xplore.  Restrictions apply.



CASINOVI: -NORM CONVERGENCE PROPERTIES OF CORRELOGRAM SPECTRAL ESTIMATES 4365

[3] S. M. Kay and S. L. Marple, Jr., “Spectrum analysis—A modern per-
spective,” Proc. IEEE, vol. 69, no. 11, pp. 1380–1419, Nov. 1981.

[4] J. G. Proakis, Digital Communications, 2nd ed. New York: McGraw-
Hill, 1989.

[5] G. Casinovi, “An algorithm for frequency-domain noise analysis in
nonlinear systems,” in Proc. 39th Design Automation Conf., New Or-
leans, LA, Jun. 2002, pp. 514–517.

[6] G. Casinovi, “Numerical computation of signal power spectral density
in nonlinear systems,” IEEE Trans. Circuits Syst. I, submitted for pub-
lication.

[7] W. Rudin, Fourier Analysis on Groups. New York: Wiley, 1990.
[8] N. Wiener, “Generalized harmonic analysis,” Acta Mathematica, vol.

55, pp. 117–258, 1930.
[9] A. Papoulis, The Fourier Integral and its Applications. New York:

McGraw-Hill, 1962.
[10] E. Hewitt and K. Stromberg, Real and Abstract Analysis. New York:

Springer-Verlag, 1965.
[11] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal

Processing, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1999.
[12] F. J. Harris, “On the use of windows for harmonic analysis with discrete

Fourier transform,” Proc. IEEE, vol. 66, no. 1, pp. 51–83, Jan. 1978.
[13] “NAG C Library Manual,” The Numerical Algorithms Group

Ltd. (NAG), Oxford, U.K., Dec. 2005 [Online]. Available:
http://www.nag.co.uk

[14] P. B. Kenington, High-Linearity RF Amplifier Design. Boston, MA:
Artech House, 2000.

[15] G. T. Zhou, “Analysis of spectral regrowth of weakly nonlinear power
amplifiers,” IEEE Commun. Lett., vol. 4, no. 11, pp. 357–359, Nov.
2000.

[16] G. T. Zhou and J. S. Kenney, “Predicting spectral regrowth of nonlinear
power amplifiers,” IEEE Trans. Commun., vol. 50, no. 5, pp. 718–722,
May 2002.

[17] S. A. Maas, “Volterra analysis of spectral regrowth,” IEEE Trans.
Commun., vol. 7, no. 7, pp. 192–193, Jul. 1997.

[18] K. Mayaram, D. C. Lee, S. Moinian, D. A. Rich, and J. Roychowd-
hury, “Computer-aided circuit analysis tools for RFIC simulation: Al-
gorithms, features, and limitations,” IEEE Trans. Circuits Syst. II, vol.
47, no. 4, pp. 274–286, Apr. 2000.

[19] P. Eymard, “L’algèbre de Fourier d’un groupe localement compact,”
Bull. Soc. Math. France, vol. 92, pp. 181–236, 1964.

[20] E. E. Granirer and M. Leinert, “On some topologies which coincide
on the unit sphere of the Fourier–Stieltjes algebra B(G) and of the
measure algebraM(G),” Rocky Mountain J. Math., vol. 11, no. 3, pp.
459–472, 1981.

Giorgio Casinovi (M’89–SM’93) received the B.S.
degrees in electrical engineering and in mathematics
from the University of Rome, Italy, in 1980 and 1982,
respectively, and the M.S. degree and the Ph.D. de-
gree in electrical engineering, both from the Univer-
sity of California, Berkeley, in 1984 and 1988, re-
spectively.

In 1989, he joined the School of Electrical and
Computer Engineering of the Georgia Institute of
Technology, Atlanta, His research interests include
computer-aided design and simulation of electronic

devices and circuits and mixed-technology systems.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 4, 2009 at 14:37 from IEEE Xplore.  Restrictions apply.


	IEEE copyright notice.pdf
	L1-Norm Convergence Properties of Correlogram Spectral Estimates
	G. Casinovi
	Abstract
	Copyright Notice



	IEEE copyright notice.pdf
	L1-Norm Convergence Properties of Correlogram Spectral Estimates
	G. Casinovi
	Abstract
	Copyright Notice






