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Abstract—A numerical-convolution-based approach has been
proposed for the accurate transient simulation of interconnects
characterized by band-limited (b.l.) frequency-domain (f.d.) data
and terminated by arbitrary equivalent circuits. Propagation delay
is enforced in the transient results by obtaining causal impulse re-
sponses from b.l.f.d. data, extracting the propagation delays from
them, and enforcing the delays in the causal impulse responses.
Causal impulse responses are obtained through a new minimum-
phase/all-pass decomposition of the frequency data. In this decom-
position, a new form for the all-pass component has been proposed
that preserves the sign of the original frequency response in the
reconstructed response, unlike the prior approaches, leading to an
accurate transient result. Arbitrary terminations are conveniently
handled by integrating the numerical convolution in a modified
nodal analysis (MNA) framework, a framework used by commer-
cial circuit simulators, through a new transient simulation formula-
tion. Numerical results demonstrating the accuracy and capability
of the proposed procedure have been presented.

Index Terms—Causality, convolution, scattering parameters,
signal flow graphs, transient response.

I. INTRODUCTION

IN MANY applications, only the band-limited (b.l.)
frequency-domain (f.d.) data (e.g., S-, Y -, and Z-

parameters) of an interconnect (e.g., a lossy transmission line)
are known. The objective is to perform an accurate transient sim-
ulation of the multiport b.l.f.d. data with the port terminations.
Such a simulation is useful for studying pulse propagation in a
transmission line or for computing crosstalk in coupled trans-
mission lines, when only the S-parameters of the lines are known
up to a given frequency. In such a simulation, it is of interest: 1)
to capture the propagation delay through the interconnects and
2) to conveniently handle arbitrary port terminations.

Most of the prior research in the transient simulation of b.l.f.d.
data employ a recursive-convolution-based approach [1]–[6].
However, this approach can become computationally exorbi-
tant for a large number of ports, Np , and/or for a large number
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of poles, Npl [3]. This computational inefficiency is mainly
due to the rational-function fitting procedure required in this
approach. Remaining prior research is based on a numerical-
convolution-based approach [7]–[13]. This approach does not
suffer from the computational inefficiency associated with the
rational-function fitting step. Most of the prior research using the
numerical-convolution-based approach do not capture the port-
to-port propagation delays in the transient simulation, when only
the b.l.f.d. data are known about the interconnects [7]–[11]. In
the prior research that does capture the propagation delays when
only the b.l.f.d. data are known, namely, [12] and [13], arbitrary
equivalent circuits for the port terminations cannot be conve-
niently handled. In this paper, a numerical-convolution-based
approach is proposed that not only captures the port-to-port
propagation delays but also conveniently handles arbitrary port
terminations. Such a handling is accomplished by integrating
convolution in a modified-nodal analysis framework, unlike [12]
and [13]. The proposed formulation uses a minimum-phase-
based reconstruction approach with a sign-preservation term.
This extra term, which is missing in [12] and [13], is essential
in obtaining accurate transient results in certain examples. De-
tailed description of the prior research, the contributions of this
paper, and the organization of the rest of the paper are provided
in Section II.

II. BACKGROUND

It has been reported that not enforcing propagation delay
(through a causality enforcement) in the transient simulation of
interconnects characterized by band-limited data can lead to in-
accurate computation of signal integrity quantities like the eye
diagram [12], [13]. Based on eye height and width, some inter-
connect design decisions, like the decision to design a passive
equalizer [14], are made. Therefore, it is important to ensure
that the propagation delay is enforced in transient simulations
of interconnects characterized by b.l.f.d. data. Port terminations
are usually described in the form of an equivalent circuit. Since
the terminations [in general, can be any simulation program with
integrated circuit emphasis (SPICE) circuit] to an interconnect
can be arbitrary, it is important that transient simulations of
b.l.f.d. data handle arbitrary port terminations and do so with
ease.

0018-9375/$25.00 © 2008 IEEE
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One straightforward approach to perform transient simulation
of interconnects such as transmission lines when characterized
by b.l.f.d. data is through a physical equivalent circuit-based
approach. In this approach, the per-unit-length parameters of
the lines are computed from f.d. data, a distributed equivalent
circuit of the lines is constructed, SPICE terminations are ap-
pended to this equivalent circuit, and the transient simulation
is performed through a circuit simulator such as SPICE. Dis-
tributed equivalent circuit implicitly accounts for the propaga-
tion delay. As commercial circuit simulators such as SPICE can
handle arbitrary equivalent circuits, arbitrary terminations are
also easily handled. However, this approach has the following
shortcomings: 1) a physical equivalent circuit model for the
lines is only known in some cases (see [15] for an example) and
not in all; 2) distributed modeling significantly increases the run
time [5], [16]; and 3) time-domain responses oscillate and show
ringing [16]. Therefore, this approach is not preferable for a
long lossy transmission line.

In such lossy transmission line applications and in others, the
transient simulation of b.l.f.d. data consists of two steps. In the
first step, the multiport f.d. data are converted to time-domain
multiport impulse responses. In the second step, the port volt-
ages and/or currents are computed from these impulse responses
and the port terminations: the multiport impulse responses re-
late the port quantities, such as the port voltages and the port
currents, through convolution. The port terminations enforce an
independent set of conditions between the voltage and the cur-
rent at a port. The second step, therefore, involves solving the
convolution relations with the termination conditions. The ease
with which arbitrary port terminations are handled depends on
how the termination conditions are constructed and solved with
the convolution relations.

Depending on how the first step is performed, the existing
methods to this transient simulation can be broadly categorized
into one of the following two approaches. In the first approach,
referred to as the recursive-convolution-based approach [1]–[6],
the first step of the transient simulation is accomplished by fitting
rational functions to the f.d. data and converting these functions
(expressed in pole-residue form) to impulse responses through
an inverse laplace transform. This transform is performed ana-
lytically, as the poles and residues are already known. Since the
poles are known, the convolution can be performed recursively,
which scales O(Nt) in time complexity, where Nt is the num-
ber of time steps. The computational complexity of the rational-
function fitting depends on how many port-to-port responses are
fitted simultaneously. When Np port-to-port responses (out of
the total N 2

p responses) are fitted together, the memory and time
complexities scale as O(N 2

p N 2
pl) and O(N 4

p N 3
pl), respectively,

where Np refers to the number of ports and Npl to the number
of poles. Therefore, the computational complexity of this fitting
can get exorbitant when either Np is large or Npl is large or
both.

In the second approach, referred to as the numerical-
convolution-based approach [7]–[13], the first step is accom-
plished numerically through a simple inverse fast Fourier trans-
form (IFFT) of the f.d. data. Owing to the IFFT, a numerical
convolution is employed for the transient simulation. The time

complexity of this convolution scales as O(N 2
t ). This complex-

ity can be alleviated to O(Nt ln Nt) through fast convolution
methods [13]. The memory and time complexities of the first
step scale as O(N 2

p Nt) and O(N 2
p Nt ln Nt), respectively, where

Nt refers to the number of time steps. These complexities are
very close to optimal values for this step, which is O(N 2

p Nt)
each for memory and time. It is to be noted that these complexi-
ties are independent of the nature of the f.d. data, and therefore,
are also independent of Npl , unlike the recursive-convolution-
based approach. In this paper, owing to the computational ef-
fectiveness of the IFFT procedure, numerical-convolution-based
approach has been adopted.

However, in a numerical-convolution-based approach, it is
difficult to capture the port-to-port propagation delays in the
transient simulation. This is because when IFFT is applied to
a b.l. data, the resulting time-domain response is usually not
causal. A time-domain response is said to be causal if it is
zero for t < 0. The desired impulse response should, however,
be zero for t < tp , where tp is propagation delay through the
system. Such a time-domain response is referred to as delay-
causal (in this paper), to differentiate it from a causal response.

Among the prior numerical-convolution-based approaches
[7]–[13], [7]–[11] do not capture the propagation delay when
only the f.d. data are known about the interconnects. Causal
impulse response from a b.l. frequency response in certain mi-
crowave applications is obtained through a minimum-phase
reconstruction of the original frequency response [17], [18].
The minimum-phase frequency responses are obtained from the
magnitude of the f.d. data using the complex cepstrum anal-
ysis [19]. For many electromagnetic systems, a nonminimum-
phase reconstruction is required [20]–[23]. For long intercon-
nects, a nonminimum-phase reconstruction has been proposed
in [12] and [13]. In this new reconstruction, the frequency re-
sponse is decomposed into a product of a minimum-phase com-
ponent and an all-pass component. The all-pass component has
unity magnitude and is used to model the propagation delay. An
exponential form for the all-pass component, exp(−jωtp), has
been employed. Since this form only introduces a time delay to
the minimum-phase impulse response, a delay-causal impulse
response is naturally obtained. This technique has been applied
successfully for uncoupled transmission line problems. The ap-
proach in [12] and [13] has two drawbacks that are the subjects
of this paper.

The first drawback is that the decomposition in [12] and [13]
may not preserve the sign of the original frequency response dur-
ing reconstruction, i.e., a frequency response H(ω) = −1 would
be reconstructed as H(ω) = 1 using this decomposition. When
the sign of a port-to-port frequency response is not preserved,
the transient results can be inaccurate and sometimes can also be
incorrect. The second drawback in [12] and [13] is that it is dif-
ficult to handle complicated terminations: in [12] and [13], the
transient simulation formulation is based on signal-flow graph-
based (SFG-based) approach, proposed in [8]. In an SFG-based
approach, the termination conditions are obtained by relating
the incident and the reflected waves through the terminations’s
reflection and transmission coefficients. Computing these coef-
ficients can be easy for simple terminations (such as a resistor
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to ground) but can get difficult for complicated terminations (a
distributed RLC circuit, for instance), limiting the usefulness of
the SFG-based approaches to only simple terminations.

In this paper, a numerical convolution-based procedure for
the accurate delay-causal transient simulation of interconnects
characterized by b.l.f.d data and terminated by arbitrary equiv-
alent circuits has been proposed. In the proposed procedure,
the delay-causality of the impulse response is ensured using a
technique similar to the one in [12] and [13]. The difference
from [12] and [13] is that a new form of the all-pass component
that also preserves the sign of the original frequency response
has been proposed. The proposed all-pass component form is
exp(−jωtp + jθ), where θ is a constant phase term. This phase,
θ, can be used to account for the sign of the frequency response
and can be computed numerically from the original frequency
response. Also, in the proposed procedure, arbitrary port termi-
nations are handled conveniently using a modified nodal anal-
ysis framework [24], a framework used by commercial circuit
simulators. In this framework, the termination conditions are ex-
pressed through Kirchoff’s current and voltage laws, which do
not require computing the reflection/transmission coefficients.
The preliminary results of the proposed MNA-based simula-
tion are described in [25]. Specifically, in [25], the formulation
was presented for simple resistive terminations. In this paper,
the formulation in [25] is extended to arbitrary terminations.
Improved accuracy of the proposed procedure compared to the
prior approach and the commercial circuit simulators Agilent’s
advanced design software (ADS) and Synopys’s HSPICE has
been shown.

The contributions of this paper are the following.
1) Numerical-convolution-based delay-causal transient sim-

ulation of interconnects characterized by multiport band-
limited data that can also conveniently handle arbitrary
port terminations.

2) Sign-preserving minimum-phase/all-pass decomposition
for the delay-causality enforcement.

The rest of the paper is organized as follows. In Section III,
the delay-causality problem with b.l.f.d data has been math-
ematically formulated. Also, in this section, the procedure to
obtain a delay-causal impulse response from the b.l. data using
the proposed form for the all-pass component has been de-
scribed. In Section VI, the numerical convolution-based delay-
causal transient simulation procedure has been explained. In
Section V, the proposed procedure to handle terminations in an
MNA framework has been described. In Section VI, simulation
results demonstrating the accuracy of the proposed decompo-
sition and of the proposed transient simulation procedure have
been presented. Finally, in Section VII, the conclusions of this
paper have been presented.

III. DELAY-CAUSALITY PROBLEM

The delay-causality problem solved in this paper, as well
as in [12] and [13], can be mathematically stated as follows.
Consider a linear time-invariant passive system (the black box
in Fig. 1) with an impulse response h(t) and a propagation
delay tp . The impulse response h(t) is delay-causal. Let this

Fig. 1. Definition of the causality problem: Given x(t) and the band-limited
and sampled frequency data, H (ω), of a passive system with a propagation
delay, tp , find the output y(t) such that tp is strictly enforced in y(t); ∆f is the
frequency step of the sampled data, and fc is some high-enough frequency up
to which the data is known. A tick mark indicates a known (or given) quantity,
and the question mark indicates an unknown quantity to be computed.

system be fed by a time-domain signal x(t), and let the time-
domain response at the output be y(t). The objective is to find
an approximate delay-causal output, ỹ(t), given x(t) and the
frequency response (in terms of Y -, Z-, and S-parameters),
H(ω), of the system at uniformly spaced frequency intervals
between 0 and fc , where fc is some high-enough frequency.

Since x(t) and y(t) are related through convolution, ỹ(t)
can be computed, if an approximate delay-causal impulse re-
sponse, h̃(t), can be found (see [12] and [13]). If ĥ (t) de-
notes the inverse fourier transform (IFT) of the b.l. response
H(0 : 2π∆f : 2πfc), where ∆f is the frequency step, then ĥ (t)
is not the preferred solution, as ĥ (t) is not delay-causal [12],
[13]. This is because when fc is finite [equivalent to multiply-
ing the infinite frequency response H(0 : 2π∆f : ∞) by a gate
function of width fc ], ĥ (t) is actually the convolution of a time-
domain sinc function, which is noncausal, and h(t), which is
delay-causal, Therefore, ĥ (t) can be nondelay-causal and may
be noncausal too. Then, the objective is to find an h̃(t) that
approximates h(t) from only H(0 : 2π∆f : 2πfc).

In the rest of the section, the procedure in [12] and [13] to
obtain the delay-causal impulse response from b.l. data has been
briefly explained, followed by the description of a possible limi-
tation of this procedure in preserving the sign of the original fre-
quency response. Next, a new decomposition for the frequency
response that removes this limitation has been proposed.

A. Delay-Causal Impulse Response Using
Linear-Phase Condition

In [12] and [13], a decomposition procedure for H (ω) that
results in a h̃(t) has been presented. This decomposition is given
as

H (ω) = Hmin (ω) e−jω tp (1)

where Hmin (ω) is the minimum-phase component (see [19]
and [26]). The function Hmin (ω) is the delayless part of H (ω)
and models effects due to attenuation and dispersion. The term
e−jω tp is the all-pass component, which has been used to model
the phase using a linear-phase condition. The term tp here refers
to the propagation delay if H (ω) was lossless. For a lossy
transmission line of length l, tp would mean the propagation
delay of a lossless line of the same length and is calculated by
the value of the propagation delay at ω = ∞ [23].

The IFT of the b.l. response Hmin (0 : ωc), ĥmin (t), is causal
(see [19]). Therefore, the IFT of the right-hand side (RHS) of
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(1), ĥmin (t − tp), is delay-causal. Therefore, h̃(t) is chosen as

h̃ (t) = ĥmin (t − tp) . (2)

The component Hmin (ω) in (1) is computed from the magnitude
of H (ω)

|Hmin (ω)| = |H (ω)| (3)

arg [Hmin (ω)] = −HT{ln|H (ω) |}. (4)

In (3) and (4), |x| stands for the magnitude of x, arg[x] is the
principal argument of complex number x, and HT{x} is the
Hilbert transform [19] of x. Using a discrete Hilbert transform
[19], (4) can be rewritten as

arg [Hmin (ω)] = − 1
2π

P
π∫

θ=−π

ln |H (θ)| cot
(

ω − θ

2

)
dθ

(5)
where P denotes the Cauchy principal value of the integral that
follows. In [12] and [13], the delay tp in (1) is computed as

tp = −Average Slope

(
arg

[
H (ω)

Hmin (ω)

])
. (6)

Propagation delay computed in the average sense (6) works well
when there is just a single delay in the frequency response. When
more than one delay is present in the frequency response, like
in a dispersive transmission line where the velocity is a function
of frequency, then tp calculated from (6) is an approximation.
For a more accurate tp , tp should be computed as the smallest
delay in the response.

Extra computational cost is incurred in obtaining a delay-
causal response, h̃(t), as opposed to a nondelay-causal response,
ĥ(t). These operations include those required to obtain Hmin (ω)
(3), (5), those required to obtain tp (6), and those required to ob-
tain ĥ(t) (2). Among these, obtaining the discrete Hilbert trans-
form [i.e., (5)] is the most expensive. Two Fourier transform
operations are needed in implementing (5) (see [19]), which
can be performed efficiently using IFFT. Therefore, asymp-
totic computational complexity in obtaining a delay-causal im-
pulse response is the same as that for a nondelay-causal impulse
response.

B. Limitation of Linear-Phase Condition

The procedure thus far described works as long as H (ω)
can be decomposed according to the functional form described
in (1). However, when H (ω) has a constant negative sign, a
simple example is H (ω) = −1, the decomposition in (1) is not
sufficient. The off-diagonal terms of the admittance matrix of a
resistive circuit have the form H (ω) = −g, where g > 0 is the
conductance between the two different ports.

To see the insufficiency of (1), H (ω) = −g is reconstructed
using (1). From (3), |Hmin (ω)| = g. From the property of
Hilbert transforms, the Hilbert transform of a constant is zero
[27]. This can also be proven from (5) by deducing that for a con-
stant H(ω), the integrand is an odd function. Therefore, the inte-
gration result is zero. Using this fact in (4), arg [Hmin (ω)] = 0.
Therefore, Hmin (ω) = g.

Since in a resistive circuit, there is no propagation delay
between ports, tp = 0. Therefore, the exponential term in (1),
call it Hap (ω), is 1.

From Hmin (ω) = g and Hap (ω) = 1, the original response
H (ω) = −g is reconstructed as only g using the decompo-
sition in (1)! In fact, since only the magnitude of H (ω) is
used to compute Hmin (ω), all frequency responses of the form
H (ω) = gejθ will be reconstructed as just g, where θ is a con-
stant real number. This disparity in the phase between the orig-
inal frequency response and the reconstructed frequency re-
sponse could affect the accuracy of the transient results, as will
be shown in Section VI.

C. Delay-Causal Impulse Response Using Generalized
Linear-Phase Condition

To account for a constant phase term in the frequency re-
sponse, the form of the decomposition in (1) is modified as

H (ω) = Hmin (ω) e−jω tp +jθ . (7)

For the example H (ω) = −g, θ = ±π. Therefore, using (7),
H (ω) = −g can be reconstructed from Hmin (ω) = g, tp = 0,
and θ = π. Therefore, the proposed all-pass component form
is e−jω tp +jθ . The resulting condition on the phase of the all-
pass component is referred to as the generalized linear-phase
condition, a condition used to denote a generalized linear-phase
system (see [19, p. 295]).

The constant phase θ in (7) can be computed numerically
from the frequency data by 1) equating the phases of the left-
hand side (LHS) and the RHS of (7), and 2) solving for θ from
the resulting equation, which can be written as

θ = arg [H (ω)] − arg [Hmin (ω)] − arg
[
e−jω tp

]
. (8)

The phase θ from (8) can be computed by obtaining the RHS
at any ω or by calculating the average of the RHS’s for all ω’s.
However, it has to be noted that tp is only computed in the av-
erage sense in Section III-A, and hence, can contribute to some
inaccuracy while calculating the term ωtp in (8). This inaccu-
racy issue can be avoided if θ is computed by obtaining the RHS
at ω = 0. However, computing θ at ω = 0 is not reliable for the
following reason: At ω = 0, the magnitude of the transfer re-
sponse can be zero, making the angle of the response zero too at
ω = 0. Such a case arises in coupled transmission lines. Also,
the angle of the minimum-phase response at ω = 0 is always
zero. For ω = 0, the integrand in (5) is an odd function of θ.
Therefore, at ω = 0, θ can be computed to be zero. Therefore,
the phase θ is computed near ω = 0. If the angle of the origi-
nal frequency response or of its minimum-phase component is
discontinuous near ω = 0, then this angle is computed in the
asymptotic sense (value of the angle as ω → 0).

Irrespective of the ω at which θ is computed, there are some
restrictions on the values θ can take. The term ejθ (7) introduces
a constant phase change to the rest of the response for all fre-
quencies including ω = 0. Since H(0) and Hmin(0) are both
real, the term ejθ can only be a real number. Therefore, the
phase angle θ can take values among 0, π, and −π rad. These
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values mean that the term ejθ at the most can result in (and
account for) a sign change.

With the proposed decomposition in (7), the impulse response
h̃(t) in (2) is computed differently, as the IFT of the RHS of (7),
i.e.,

h̃ (t) = ĥmin,θ (t − tp) (9)

where ĥmin,θ (t) is the b.l. IFT of the product Hmin (ω) ejθ .

IV. NUMERICAL CONVOLUTION-BASED DELAY-CAUSAL

TRANSIENT SIMULATION

Using (9), all the impulse responses between two different
ports are obtained as delay-causal impulse responses. However,
the impulse responses between the same ports (i.e., sii(t), yii(t),
etc.) are obtained as the IFT of the corresponding frequency
responses, as is being done in [12] and [13]. This different
treatment to the self-terms is due to the following considerations:
1) The self-impulse responses represent the reflection (or return
loss) characteristics at a port due to an excitation at the same port.
As there is no delay between the same ports, propagation delays
for self-terms are made zero. In the case of multiple delays, the
smallest of them is zero. 2) Port-to-port frequency responses
between the same ports are considered as minimum phase [20],
and minimum-phase frequency responses have a causal time-
domain response [19]. Therefore, self-impulse responses are
automatically delay-causal with a delay of zero.

Once the multiport impulse responses are known, the tran-
sient simulation involves computing the port voltages given the
equivalent circuits of the port terminations. For a numerically
robust transient simulation, the f.d. data are expressed as S-
parameters [9]. The transient simulation requires solving the
convolution equations relating the port quantities, such as the
incident and reflected waves, with the equations describing the
termination conditions. In the rest of the section, the convolution
equations are derived.

Let S (ω) ∈ CNp ×Np be the multiport S-parameter. Then,

S (ω) can be written as

S (ω) = S (∞) + Ŝ (ω) (10)

where S (∞) is S (ω) at ω = ∞ and is due to the direct coupling

between the input and the output ports, and Ŝ (ω) is the remain-

ing part of S (ω). If Ā (ω) ∈ CNp ×1 and B̄ (ω) ∈ CNp ×1 , re-
spectively, are the vectors of incident and reflected waves [38],

then B̄ (ω) = S (ω) Ā (ω), which in the time domain becomes

b (t) = s (t) ∗ a (t) . (11)

In (11), s (t), a (t), and b (t) are the IFTs of S (ω), Ā (ω), and
B̄ (ω), respectively. The symbol “*” in (11) denotes a linear
convolution [19] and is defined as

y(t) = h (t) ∗ x (t) =

t∫
τ =0

h (t − τ)x (τ) dτ. (12)

If h(t) in (12) does not have any impulses, then the continuous
integration in (12) can be discretized using a (right) rectangular
integration rule as

y (t) ≈
n∑

m=1

h ((n − m) ∆t) x (m∆t) ∆t + O(∆t) (13)

where ∆t is the time step, and O(∆t) denotes the first-order

accuracy of the integration rule. Defining ŝ (t) to be the IFT

of Ŝ (ω) and δ (t) to be the Dirac-Delta function, s (t) can be
written as

s (t) = S (∞) δ (t) + ŝ (t) . (14)

Making use of (12)–(14), (11) can be written as

b (t) ≈ S (∞) a (t) +
n∑

m=1

ŝ ((n − m) ∆t) a (m∆t)∆t. (15)

When the nth term in the summation in (15) is separated and
combined with the first term of the RHS of (15), then the result-
ing equation can be rewritten as

−
[
S (∞) + ŝ (0) ∆t

]
ā (t) + b̄ (t) = h̄ (t) (16)

where

h̄ (t) =
n−1∑
m=1

ŝ ((n − m) ∆t) ā (m∆t) ∆t. (17)

From (17), it can be observed that h̄(t) depends only on the
known values of ā; hence, the RHS of (16) is known. However,
ā (t) and b̄ (t) in (16) are still not known. Therefore, (16) con-
stitutes a set of Np equations with 2Np unknowns [both ā(t)
and b̄(t)]. The system in (16) has be solved together with the
equations describing the terminations.

V. HANDLING TERMINATIONS

In this section, the procedure to handle port terminations in
SFG-based approaches [8], [12], [13] has been briefly explained,
followed by a description of its limitation to handle complicated
terminations. Next, the MNA-based convolution simulation that
handles terminations without the limitations in an SFG-based
approach has been proposed.

A. Handling Terminations in an SFG-Based Approach

Since both ā (n∆t) and b̄ (n∆t) are still not known in (16),
at least another Np equations are needed to compute them. The
additional Np equations are obtained by relating a (t) and b (t)
through the termination conditions [8]

a (t) = Γ (t) b (t) + T (t) g (t) . (18)

In (18), Γ (t) ∈ RNp ×Np and T (t) ∈ RNp ×Np are the diagonal
matrices of the reflection and the transmission coefficients at
the ports at time t, respectively. The vector g (t) ∈ RNp ×1 is
a function of the excitations at the ports and is known at time
t. The port quantities a (t) and b (t) can now be obtained by
solving (16) together with (18). Let Nn denote the total number
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of nodes in the network, and let the first Np nodes correspond
to the Np ports. If v (t) ∈ RNn ×1 denotes the vector of node
voltages, then the port voltages can be computed as

v1 :N p
(t) = a (t) + b (t) . (19)

In [12] and [13], the port voltages at every time step are com-
puted by solving (16), (18), and (19) . The disadvantage of such

a computation is that the matrices Γ (t) and T (t) in (18) are
difficult to compute when the terminations have complicated
equivalent circuits, as computing these matrices require com-
puting driving point impedances looking away from the ports.

B. Handling Terminations in an MNA-Based Approach

This difficulty can be avoided if the termination conditions in
(18) are alternatively enforced through a modified nodal anal-
ysis formulation. If i (t) ∈ RNp ×1 is the vector of currents en-
tering the ports, then the MNA of the whole network (multiport
network + rest of the network) yields the following system of
equations:

C
•
x (t) + G x (t) +

[
i (t)

0Nmna−Np

]
= r (t) (20)

where
•
x (t) =

dx (t)
dt

, x (t) ∈ RNmna×1

is the vector of unknown variables in an MNA approach, and
r (t) ∈ RNmna×1 is a vector describing the current and the voltage

sources in the whole network. The quantities C ∈ RNmna×Nmna

and G ∈ RNmna×Nmna , r (t) ∈ RNmna×1 have the same definitions
as in the MNA approach, and Nmna = Nn + Nvs

+ NL . The
symbol Nvs

denotes the total number of voltage sources in the
network, and the symbol NL denotes the total number of induc-
tors in the network. In (20), the symbol 0k denotes a column
vector of zeros with k rows.

Since i (t) in (20) is dependent on the f.d. data, the MNA
system in (20) cannot be solved alone. Assuming all ports are
referenced with respect to a characteristic admittance of Y0 ∈ R,
the port currents can be expressed as

i (t) = Y0
(
a (t) − b (t)

)
. (21)

When i (t) in (21) is substituted in (20), the latter equation can
be rewritten as

C
•
x (t) + Gx (t) + Y0

[
a (t)

0Nmna−Np

]

−Y0

[
b (t)

0Nmna−Np

]
= r (t) . (22)

To solve for all the node voltages including the port voltages,
(22) is solved along with (16) and (19). The system combining
these equations can be written as

W
•
u (t) + V u (t) = z (t) (23)

where u (t) ∈ RNmna+2Np ×1 , W ∈ RNmna+2Np ×Nmna+2Np , V ∈
RNmna+2Np ×Nmna+2Np , and z (t) ∈ RNmna+2Np ×1 . These quanti-

ties are defined as follows:

ū (t) =




x (t)

a (t)

b (t)


 (24)

W =

[
C 0Nm n a ×2Np

02Np ×Nm n a
02Np ×2Np

]
(25)

V

=




G Y0INp
−Y0INp

0Np ×Nmna −
(
S (∞) + ŝ (0) ∆t

)
INp

INp
0Np ×Nmna−Np INp

INp




(26)

z̄ (t) =




r (t)

h (t)

0Np


 . (27)

In (25) and (26), the symbol 0m×n denotes a matrix of zeros with

m rows and n columns, and Im denotes an identity matrix of
size m. The unknown node voltages (u1:Np

(t)) can be computed
from the solution of (23). The system (23) has the same form as
the system most SPICE-like simulators (see [24] and [28]) have.
Therefore, numerical techniques to solve (23) are the same as
those employed in SPICE-like simulators. With the formulation
described thus far, any linear termination can be handled without
having to compute the reflection or the transmission coefficients
at the ports.

The proposed formulation can also be extended to nonlin-
ear terminations. It is to be noticed that when the terminations
are linear, (23) would represent a system of linear algebraic
equations. This linear system of equations can be solved using
linear matrix solution techniques. On the other hand, if the ter-
minations are nonlinear, (20) [therefore, even (22)] would have
nonlinear terms in addition to the existing terms, as part of the
MNA of the nonlinear elements. Equation (23) would therefore
represent a system of nonlinear algebraic equations, which can
be solved using the Newton–Raphson method [29].

The explicit splitting of S (ω) described in (10) can be avoided
by dividing the S-parameters by ∆t before computing the im-
pulse response from them and by using IFFT [19] to obtain the
impulse responses: Defining p (t) to be the IFFT [19] ( �= IFT.

Note IFFT and IFT results can differ by a factor of ∆t) of S (ω )
∆t ,

p (t) can be expressed as

p (t) =
S (∞)

∆t
δ (t) + ŝ (t) . (28)

From (28), the following can be inferred:

S (∞) + ŝ (0) ∆t = p (0) ∆t (29)

ŝ (t �= 0) = p (t �= 0) . (30)
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Fig. 2. Test setup for computing pulse response of a lossless transmission line
terminated by a distributed RLC circuit. The transmission line is characterized by
band-limited two-port causal S-parameters from 0 to 10 GHz with a frequency
step of 1 MHz.

Using (29) and (30) in (16), it can be observed that (16) can be
rewritten only in terms of p (t), which is obtained without any

splitting to S (ω).

VI. RESULTS

In this section, simulation results demonstrating the accuracy
of the proposed decomposition in (7) and of the proposed tran-
sient simulation procedure have been presented. For demonstrat-
ing accuracy, Agilent’s ADS [30], Synopsys’s HSPICE [31],
frequency-domain solutions have been used as references. The
ADS engine is based on the numerical-convolution-based ap-
proach. The HSPICE engine (W -element w/ S-parameter input)
is based on the recursive-convolution-based approach. Further,
in HSPICE simulations, delay is extracted first before rational-
function fitting. Group delay is used for this purpose.

First, the accuracy of the proposed method in handling com-
plicated terminations and in extracting the propagation delay
is demonstrated. For this demonstration, an example is chosen
such that the decomposition in (1) alone is sufficient for the
reconstruction of the frequency response. As an example, the
pulse response of a lossless transmission line (see Fig. 2) is con-
sidered. The propagation delay in this line is 2 ns. The average
delay extracted using (6) is also 2 ns. The source termination
in Fig. 2 is an example of the kind of termination for which
it is difficult to use an SFG-based approach, as it is difficult
to compute the Thevenin’s equivalent circuit for the source.
On the other hand, in the MNA-based approach, no such diffi-
culty is present. The voltages at both the near end and the far
end of the line (ports p1 and p2 in Fig. 2) are computed us-
ing both delay-causal and nondelay-causal impulse responses.
For a lossless transmission line and for an available bandwidth
fc = k(1/tp), where tp is the propagation delay, and k is a
positive integer, the nondelay-causal impulse response is auto-
matically delay-causal. That is, in such a situation, no explicit

delay extraction and enforcement is needed. Therefore, for this
example (fc = 20(1/tp)), the nondelay-causal results are the
most accurate with respect to handling the f.d. data. To com-
pare the accuracy of the whole system, which includes even the
terminations, ADS and HSPICE are used. For this example, the
ADS results are expected to be delay-causal for the same reason
mentioned earlier. Therefore, both ADS and HSPICE results
can be reliable reference solutions. The delay-causal (denoted
as “Delay-Causal”) and nondelay-causal voltages (“Nondelay-
Causal”) are compared with those obtained from ADS (“ADS”)
and from HSPICE (“HSPICE”) in Fig. 3(a)–(c). From Fig. 3(a)–
(c), it can be observed that the “Delay-Causal” results from the
proposed procedure match closely with the other results. From
Fig. 3(c), it can be observed that propagation delay (= 2 ns)
is captured exactly in the ’Delay-Causal’ results. This example
demonstrates the accuracy of the proposed formulation in han-
dling complicated terminations and in extracting (and enforcing)
the propagation delay.

Next, the accuracy of the proposed transient simulation has
been demonstrated for a dispersive transmission line charac-
terized by a causal data. As an example, the pulse response
of a lossy strip line [see Fig. 4(a)] is considered. The prod-
uct of the frequency-dependent inductance and capacitance is
shown in Fig. 4(b). A lossless stripline of the same length would
have a delay of approximately 6.47 ns. The average delay ex-
tracted using (6) is 6.5 ns. The voltages at both the near end
and the far end of the line are computed using both delay-
causal and nondelay-causal impulse responses. These voltages
are compared with those obtained from ADS and HSPICE in
Fig. 5(b)–(d). Unlike the previous example, the transmission
line is lossy. Therefore, it is not possible to exploit periodicity
to get a reference solution. Therefore, the “Nondelay-Causal”
results may not be reliable as a reference solution with respect to
handling the f.d. data. Therefore, the problem was also solved
in the frequency domain, and the frequency-domain voltages
are converted to the corresponding time-domain results using
the IFFT. Since the IFFT results inherently denote a circular
convolution, care has been taken to make these results perform
a linear convolution (see [19, p. 580, Fig. 8.18]). The IFFT re-
sults are used as the reference. From Fig. 5(a) and (b), it can
be observed that the “Delay-Causal” and “Nondelay-Causal”
results from the proposed procedure match closely with the re-
sults from both ADS and IFFT. However, the propagation delay
(= 6.5 ns) is captured in the “Delay-Causal” (proposed) results
[see Fig. 5(c)] but not in the “Nondelay-Causal” and “ADS”
results. It is to be noted that the nondelay-causal formulation
is the same as the delay-causal formulation except for the de-
lay extraction and enforcement in the latter. This comparison
shows that unless the propagation delay is extracted and en-
forced explicitly, it is usually not captured. It is to be noted
that the IFFT results will not capture the propagation delay,
as these results are equivalent to performing a linear convolu-
tion without the delay enforcement. Therefore, the IFFT results
would be similar to the nondelay-causal results in terms of delay
enforcement and accuracy. This example demonstrates the accu-
racy of the proposed formulation in handling dispersive causal
data.
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Fig. 3. Comparison of pulse responses at p1 and p2 in Fig. 2 between the
proposed method (“Delay-Causal”) and ADS, HSPICE, and nondelay-causal
simulations. (a) Voltage at the near end of the transmission line, i.e., at p1 in
Fig. 2. (b) Voltage at the far end of the transmission line, i.e., at p2 in Fig. 2.
(c) Zoomed-in voltage at the far end of the transmission line between 0 and
2 ns. Note the propagation delay of 2 ns through the line is captured in the
“Delay-Causal” results.

The “Delay-Causal” results are also compared with
“HSPICE” results in the same figure [Fig. 5(a)–(c)]. It is to
be noted that the HSPICE results are different from the rest of
the results in two ways: 1) From Fig. 5(a) and (b), it can be
noticed that the HSPICE results are inaccurate compared to the
rest of the results. This inaccuracy is due to the approximation

Fig. 4. Test setup of pulse response of a lossy transmission line terminated
by a distributed RLC circuit. The transmission line is characterized by band-
limited two-port causal S-parameters from 0 to 20 GHz with a frequency step
of 1 MHz. (a) Test setup. (b) Square root of the product of frequency-dependent
inductance and capacitance.

involved in fitting a rational function system to delayless fre-
quency responses. On the other hand, “Delay-Causal” results
do not suffer from this inaccuracy, as they are obtained using a
numerical-convolution-based approach (which does not curvefit
responses). 2) From Fig. 5(c), it can be noticed that the propaga-
tion delay from HSPICE (6.775 ns) is approximately 0.275 ns
(= 11∆t) more than the predicted delay. From the “IFFT” and
“Nondelay-Causal” results in Fig. 5(c), it can be inferred that
the propagation delay of more than 6.5 ns may not be an ac-
curate solution. Therefore, the proposed method can be more
accurate than recursive-convolution-based approaches like the
W -element in HSPICE in some situations.

In the previous example, the amplitudes of the nondelay-
causal responses before the propagation delay were small (see
“Nondelay-Causal,” “ADS,” and “IFFT” results in Fig. 5 for
t < 6.5 ns). This has to do with the causal nature of the data.
However, if the S-parameters were noncausal, this amplitude
can be significant [6]. Though the use of noncausal data is not
advised [6], there are situations when the user is not aware of
the causality of the data. For example, some existing transmis-
sion line models (see TLINP model in ADS) inherently produce
noncausal data. The proposed technique can be used to get an
approximate causal time-domain response given even some non-
causal data. This feature is demonstrated in the next example.
It is to be noted that Hilbert-transform-based techniques have
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Fig. 5. Comparison of pulse responses of the setup in Fig. 4 between the
proposed method (“Delay-Causal”) and ADS, HSPICE, frequency-domain so-
lution (“IFFT”), and nondelay-causal simulations. (a) Voltage at the near end
of the transmission line, i.e., at p1 in Fig. 4. (b) Voltage at the far end of the
transmission line, i.e., at p2 in Fig. 4. (c) Zoomed-in voltage at the far end of
the transmission line between 0 and 7 ns. Note the propagation delay of 6.5 ns
through the line is captured in the “Delay-Causal” results only.

been employed in the past to handle noncausal data (see [26]
and [32]–[36]). The previous example is repeated for a new
transmission line specification (see Fig. 6). The noncausal data
were obtained by a noncausal circuit model that considers vari-
ation in R(f) and G(f) but ignores variation in L(f) and G(f)
(see the model TLINP in ADS). The actual propagation de-

Fig. 6. Pulse response of a lossy transmission line terminated by a distributed
RLC circuit. The transmission line is characterized by band-limited two-port
noncausal S-parameters from 0 to 10 GHz with a frequency step of 1 MHz. (a)
Test setup.

lay for this line is 3 ns. The average delay extracted using (6)
is also 3 ns. As can be observed from Fig. 7(c), the “Delay-
Causal” results capture the propagation delay (= 3 ns), while
the other two results do not. Also, from Fig. 7(c), it can be
observed that the amplitudes of the nondelay-causal voltages
(“Nondelay-Causal” and “ADS”) before the propagation delay
are not small. The close match between the “Nondelay-Causal”
results and “ADS” results in Fig. 7(a) and (b) demonstrates
the accuracy of the proposed formulation without the delay en-
forcement. The difference observed between the “ADS” and the
“Delay-Causal” results is due to using noncausal data without
delay-causality enforcement in the former.

The “Delay-Causal” results in Fig. 7(a), (c) are also compared
with those from HSPICE in Fig. 8(a)–(c). From Fig. 8(a) and (b),
it can be observed that the “Delay-Causal” results match very
closely with the “HSPICE” results. Also, from Fig. 8(c), it can
be noticed that propagation delay is captured in both the results.
The reason for this close agreement with HSPICE is attributed
to the delay extraction done prior to rational-function fitting in
HSPICE [31]. Such a processing in HSPICE is similar to the
one followed in the method-of-characterisics approach [6]. This
approach has been demonstrated to yield delay-causal responses
for lossy transmission lines in [6].

Until now, the decomposition in (1) is sufficient for all the
examples. To demonstrate the need for and the accuracy of
the proposed decomposition in (7), a coupled-line example is
considered. As an example, the step response in two coupled
transmission lines is simulated. Consider the symmetric loss-
less coupled microstrip transmission lines shown in Fig. 9. The
geometry of the lines and of the substrate are specified in Fig. 9.
The coupled lines are modeled by four-port S-parameters from
0 to 4 GHz (Agilent’s ADS was used for obtaining the S-
parameters). At port p1 , a step voltage source is applied. All
the ports are terminated with Z0 (= 22 Ω). It was found that
the decomposition in (7) was needed only for the transfer re-
sponse S41 . This need would be felt if the constant phase θ in
(7) is shown to take a nonzero value (if θ = 0, the proposed
decomposition in (7) is the same as the decomposition in (1),
hence there is no need for the proposed decomposition). There-
fore, the phase θ is computed for S14 (= S41), using the numer-
ical procedure described in Section III-C.
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Fig. 7. Comparison of pulse responses of the setup in Fig. 6 between the
proposed method (“Delay-Causal”) and ADS and nondelay-causal simulation.
(a) Voltage at the near end of the transmission line, i.e., at p1 in Fig. 6. (b)
Voltage at the far end of the transmission line, i.e., at p2 in Fig. 6. (c) Zoomed-in
voltage at the far end of the transmission line between 0 and 4 ns. Note the
propagation delay of 3 ns through the line is captured in the “Delay-Causal”
results only.

The numerical phase extraction procedure in Section III-C
requires computing the angles of the original frequency re-
sponse and of the minimum-phase response near ω ≈ 0 [see
(8) specifically]. This procedure is described next. In Figs. 10
and 11, the procedures to compute the angle of the S14 and
of its minimum-phase component near ω = 0, respectively, are
described. Fig. 10 consists of two parts: 1) in the first part, the
angle of S14(ω) is shown for frequencies up to 4 GHz and 2)

Fig. 8. Comparison of pulse responses of the setup in Fig. 6 between the
proposed method (“Delay-Causal”) and HSPICE. (a) Voltage at the near end
of the transmission line, i.e., at p1 in Fig. 6. (b) Voltage at the far end of the
transmission line, i.e., at p2 in Fig. 6. (c) Zoomed-in voltage at the far end of
the transmission line between 0 and 4 ns. Note the propagation delay of 3 ns
through the line is captured in the “Delay-Causal” results only.

in the second part, the angle of S14(ω) is shown only for fre-
quencies near f = 0. (See only the results from “ADS” for the
current discussion; the discussion on the “Analytical” results
are deferred for now.) From the second part of Fig. 10, it can be
observed that arg[S14(f)] → −π/2 as f → 0.
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Fig. 9. Test setup of a coupled microstrip transmission line circuit in which
the lines are characterized by four-port S-parameters. The symbol pi refers to
port i. The circuit is excited by a step source at p1 , and the transient voltages at
p2 and p4 are computed.

Fig. 10. arg[S14 (f )] → −π/2 as f → 0.

In Fig. 11, the procedure to compute the phase of S14min(ω)
near ω = 0 is described. Once again, in Fig. 11, the discussion on
“· · · analytical expr.” is deferred for now. Unlike arg [S14(f)],
arg[S14min(f)] is not smooth near f = 0 (see both parts of
Fig. 11). The argument of S14min(f) is found to have numer-
ical oscillations (triangular oscillations with period 2∆f , see
Fig. 11) because only a numerical Hilbert transform is being
applied and the phase of minimum-phase component changes
abruptly at f = 0. Hence, an asymptotic value of the phase is
computed for S14min(f). It is found that arg[S14min(f)] → π

2
asymptotically as f → 0, as shown in Fig. 11(b) by the intercept
of the straight line (fitted to the angle of the minimum-phase
response) with f = 0 axis. Since the angles arg[S14(f)] and
arg [S14min(f)] approach different values as f → 0, it is ob-
vious from (8) that θ �= 0 for S14(ω). Using these phases and
using (8), the constant phase θ is computed to be −π for S14(f).

This value of θ for S14(ω) can be verified theoretically as
follows. The discussion deferred thus far on the analytical results
in Figs. 10 and 11 is now explained. From [37], S14(ω) can be
analytically expressed as

S14 (ω) = −je−jβ0 l sin ((βe − βo) l) (31)

Fig. 11. arg[S14 m in (f )] → π/2 as f → 0. (a) Angle of S14m in (f ) as a
function of f . (b) Straight-line fit to calculate the angle of the minimum-phase
component f → 0.

where l is the length of the line, and β0 is the propagation
constant of the uncoupled line, and βe and βo are the even- and
odd-mode propagation constants of the coupled lines. These
propagation constants are defined as

β0 =
ωε

1
2
eff

c
βe =

ωε
1
2
e

c
βo =

ωε
1
2
o

c

where c is the velocity of light in vacuum, εeff is the effec-
tive relative dielectric constant of the lines when they are un-
coupled, and εe and εo are the even- and odd-mode relative
dielectric constants, respectively, of the lines when they are
coupled. For the coupled line in Fig. 9, εeff can be computed
as 3.9056 from [38]; the dielectric constants εe and εo are ob-
tained from ADS and are 4.191 and 3.604, respectively. To
validate the expression in (31), the plots in Figs. 10 and 11 are
obtained using (31) and are plotted together with the previous
plots. From (31), because of the term −j, it can be clearly seen
that arg [S14(f)] → −π/2 as f → 0. Also, from (31) and (4),
S14m in (f) = −� [HT {ln |sin ((βe − βo) l)|}], for which there
is no analytical solution. It can be numerically shown that the
argument of the minimum-phase response of a sine function
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Fig. 12. Comparison of transient results at p4 in Fig. 9 using the decomposi-
tions in (1) (“Delay-Causal, LP”) and (7) (“Delay-Causal, GLP”).

such as sin(aω), where a is independent of ω, approaches π
2

asymptotically as f → 0. Therefore, the constant phase θ = −π
for S14(ω).

With the need for the decomposition in (7) already estab-
lished, the effect of using (or not using) the proposed decom-
position on the transient results is shown next. The objectives
of the following are twofold: 1) to further demonstrate the need
for the proposed decomposition using transient results and 2)
to demonstrate the accuracy of the proposed transient simula-
tion procedure with the proposed decomposition. The effect on
the transient results can be considerable sometimes, as will be
shown in the current example, and can be not-so considerable
yet important sometimes, as will be shown in the next example.
For this purpose, the voltage at p4 (see Fig. 9) is computed. In
Fig. 12, the voltages at p4 obtained from the decomposition in
(1) (“Delay-Causal, LP” in Fig. 12) and from the decomposi-
tion in (7) (“Delay-Causal, GLP” in Fig. 12) are compared. The
voltages from ADS and from HSPICE are used as a reference.
From Fig. 12, it can be observed that the voltage in the case
“Delay-Causal, LP” differs in sign from the voltage in the case
“Delay-Causal, GLP.” Thus, not using the proposed decompo-
sition can result in an incorrect transient result.

In the previous example, the correct result among the results
obtained with and without the decomposition could be found
with the knowledge of the far-end crosstalk due to a step source.
In the next example, a case is shown where such finding would
be hard. As an example, the coupled lines in Fig. 9 are excited
at p1 and p3 by pseudorandom bit sources, and the voltages at
all the ports are computed. Each source has a series resistance
of 0.25 Ω, an amplitude of 5 V, and a rise and fall time of 0.5 ns.
The time step of the simulation is the same as in the previous
example. In Fig. 13, the voltages at all the four ports are com-
pared with those from ADS and HSPICE. From Fig. 13(b) and
(d), it can be seen that the results from the case “Delay-Causal,
GLP” (dash) match with those from ADS (solid) and HSPICE
(dot), demonstrating the accuracy of the transient results with
the proposed decomposition. It can be noticed that the voltages
at p4 (p3) from the case “Delay-Causal, LP” (dash–dot) have
opposite voltage excursions compared to the voltages from the
other cases. The difference between the cases “Delay-Causal,
LP” and “Delay-Causal, GLP” is not as considerable as it was in

Fig. 13. Comparison of transient responses obtained with linear-phase condi-
tion and with generalized linear-phase condition. Example is a coupled trans-
mission line excited by pseudorandom bit patterns. (a) Voltage at p1 . (b) Voltage
at p2 . (c) Voltage at p3 . (d) Voltage at p4 .
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Fig. 14. Comparison of voltage at p4 between 3.5 and 4.5 ns from different
methods. Approximate propagation delay is captured in the delay-causal result.

the previous example, yet may be important. Moreover, this dif-
ference can become considerable if the rise time of the voltage
source is reduced, as the crosstalk is inversely proportional to
rise time in a two-coupled transmission line [39]. Therefore, the
proposed decomposition in (7) is necessary for accurate delay-
causal transient simulation in examples such as the coupled
transmission lines.

Though the “Delay-Causal” results match well with ADS
[Fig. 13(a)–(d)], the propagation delay is captured only in the
former. To demonstrate this difference, the voltage at p4 is com-
pared between the “Delay-Causal” and “ADS” results for 3.5–
4.5 ns in Fig. 14. The propagation delays computed with εeff , εe ,
and εo are 3.349, 3.469, and 3.217 s, respectively. The average
delay computed from (6) is 3.2713 s for S41(f). The sources at
p1 and p3 are nonzero only after 1 ns. Therefore, the voltage at
p4 should be nonzero only after an additional time delay equal
to the propagation delay. From Fig. 14, it can be observed that
the propagation delay (approximated to the nearest multiple of
∆t in Fig. 14) is captured in the “Delay-Causal” result but not
in the “ADS” result. The HSPICE result has an approximate
propagation delay of 3.375 ns (see Fig. 14).

The proposed method, unlike the W -element in HSPICE,
can be theoretically applied to even nontransmission line
examples.

VII. CONCLUSION

A numerical-convolution-based procedure has been proposed
for the accurate transient simulation of interconnects character-
ized by band-limited frequency-domain data and terminated by
arbitrary equivalent circuits. Propagation delay is enforced in the
transient results by obtaining a causal impulse response through
a new minimum-phase/all-pass decomposition of the frequency
data, extracting the delay from the data, and enforcing the de-
lay in the causal impulse response. In this decomposition, a
new form for the all-pass component has been proposed that
preserves the sign of the original frequency response in the re-
constructed response, unlike the prior approaches, leading to
an accurate transient result. This new form is shown to be es-
sential in computing the far-end crosstalk in coupled microstrip
transmission lines. Arbitrary terminations are conveniently han-
dled by integrating the numerical convolution in a modified

nodal analysis framework, a framework used by commercial
circuit simulators, through a new transient simulation formu-
lation. Numerical results demonstrating the improved accuracy
and capability of the proposed procedure compared to the prior
approach and to the commercial circuit simulators Agilent’s
advanced design software and Synopsys’s HSPICE have been
shown.
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