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Abstract 
This paper presents a new equivalent-circuit model of SiBARs, derived in a 
mathematically rigorous way from the physics equations governing the behavior of the 
device. The model is parametric, that is, the model component values can be computed 
directly from the dimensions of the resonator and the properties of the material. The 
model also accounts fully, accurately and automatically for aspects of the device behavior 
that arise from the interaction of multiple physics domain: the shift in the resonance 
frequency with the polarization voltage (“spring softening”), the effect of the polarization 
voltage and gap size on the insertion loss, and the reduction in the resonator loaded Q as 
the polarization voltage is increased. In contrast, those effects are not automatically 
accounted for by other models, such as mass-spring combinations. Finally, the model 
described is load- and source-independent, and thus it reproduces accurately the behavior 
of the device itself, regardless of the type and characteristics of the surrounding circuitry. 
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Abstract—This paper presents a new equivalent-circuit model of 
SiBARs, derived in a mathematically rigorous way from the 
physics equations governing the behavior of the device. The 
model is parametric, that is, the model component values can be 
computed directly from the dimensions of the resonator and the 
properties of the material. The model also accounts fully, 
accurately and automatically for aspects of the device behavior 
that arise from the interaction of multiple physics domain: the 
shift in the resonance frequency with the polarization voltage 
(“spring softening”), the effect of the polarization voltage and 
gap size on the insertion loss, and the reduction in the resonator 
loaded Q as the polarization voltage is increased. In contrast, 
those effects are not automatically accounted for by other 
models, such as mass-spring combinations. Finally, the model 
described is load- and source-independent, and thus it 
reproduces accurately the behavior of the device itself, 
regardless of the type and characteristics of the surrounding 
circuitry. 

I. INTRODUCTION 
Much research activity in recent years has been directed at 

the development of bulk acoustic resonators that are 
compatible with standard integrated circuit technologies. In 
this respect, capacitive silicon resonators offer a particularly 
attractive option, since they can be made entirely of materials 
that are used routinely in IC fabrication processes, resulting in 
significant advantages in terms of ease of integration and cost 
savings. For this reason, their use is becoming increasingly 
common in a wide variety of RF circuits, such as reference 
oscillators and filters [1]. 

Disk resonators were among the first examples of 
micromechanical bulk resonators, but more recently width-
extensional-mode resonators based on an alternative, 
rectangular-bar geometry were demonstrated [2]. In this paper 
this particular type of capacitive resonators will be referred to 
as silicon bulk acoustic resonators, or SiBARs. The basic 
structure of a SiBAR is schematically shown in Fig. 1: the 
resonating bar element is placed between two electrodes, 
supported by two thin tethers. A DC polarization voltage 
applied between the resonator and the electrodes generates an 
electrostatic field in the capacitive gaps. When an AC voltage 
is applied to the drive electrode, the electrostatic force applied 
to the corresponding face of the resonator creates an elastic 

wave that propagates through the bar. Small changes in the 
size of the capacitive gap on the other side of the device 
induce a voltage on the sense electrode, the amplitude of 
which peaks near the mechanical resonant frequencies of the 
bar. 

While the behavior of bulk resonators is well understood 
in broad, qualitative terms, sufficiently accurate analytical 
models of those devices that can be used in place of full-
blown finite-element simulation are still lacking. This is a 
significant drawback in the design of mixed-technology 
systems that rely on micromechanical resonators. In the 
simulation of such systems it is common practice to use 
simple RLC models for the resonators [3][4]. However these 
models are usually derived using empirical or semi-empirical 
techniques, often relying on qualitative analogies with 
similarly behaving systems, such as mass-spring 
combinations. Consequently, the accuracy of such models 
cannot be demonstrated or even estimated theoretically: at 
best, it can only be verified numerically or empirically, and on 
a case by case basis. In fact, an empirical RLC model could 
not track changes in Q and the insertion loss of a silicon bulk 
acoustic resonator (SiBAR) with the polarization voltage 
without the introduction of an artificial parasitic resistance [5]. 

This paper presents an equivalent circuit model of a 
SiBAR that is derived in a mathematically rigorous way from 
the governing equations of the device. The model is 
parametric, in that the model component values can be 
computed directly from the dimensions of the resonator and 
the properties of the material. The only exceptions are the 
resistances in the model, whose values depend on the energy 
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Figure 1.  Schematic structure of a SiBAR: top view (left) and cross-

sectional view (right) 
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losses in the resonator, which are difficult to model 
analytically. 

The model also accounts fully, accurately and 
automatically for aspects of the device behavior that arise 
from the interaction of multiple physics domain: the shift in 
the resonance frequency with the polarization voltage (“spring 
softening”), the effect of the polarization voltage and gap size 
on the insertion loss, and the reduction in the resonator loaded 
Q as the polarization voltage is increased. In contrast, those 
effects are not automatically accounted for by other models, 
such as mass-spring combinations. Finally, the model 
described in this paper is load- and source-independent, and 
thus it reproduces accurately the behavior of the device itself, 
regardless of the type and characteristics of the surrounding 
circuitry. The model has been validated numerically against 
finite-element simulations and experimentally against 
measurements taken on a SiBAR fabricated using the 
HARPSS process [2]. 

II. RESONATOR MODEL 
As in all capacitive MEMS resonators, the operation of a 

SiBAR is based on the principle of electromechanical 
transduction. Let W, L and th denote respectively the width, 
length and thickness of the resonator, as shown in Fig. 1. If a 
DC polarization voltage ܸ is applied across the drive and 
sense capacitive gaps, the resulting electric fields create 
pressure on the faces of the resonator and a consequent elastic 
deformation of the structure. If a small-signal voltage ݒௗ is 
superimposed to the DC voltage at the drive electrode, the 
change in the electric field in the capacitive gap and the 
corresponding change in the pressure applied to the resonator 
face generate an elastic wave that propagates across the width 
of the resonator. 

Therefore a compact SiBAR model can be derived from 
the equations of elastic wave propagation, under the 
approximate assumption that the resonant modes of interest 
are created by the propagation of plane waves in the direction 
of the width of the resonator. Under this assumption, an 
analytical solution of the elasticity equations can be obtained. 
By means of appropriate circuit synthesis methods, this 
solution is used to derive an equivalent circuit, that is, a circuit 
the behavior of which is described by the same equations that 
characterize the operation of the SiBAR. 

The resulting equivalent circuit model of the SiBAR is 

shown in Fig. 2. The values of the circuit elements are given 
by the following expressions 
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In the expressions above, ܳ is the value of the DC charge 
that is present on the drive and sense gap capacitances. 
Specifically ܳ ൌ ܥ ܸ ൌ ሺܣߝ ݃Τ ሻ ܸ, where g is the size of 
the capacitive gap, ε the dielectric permittivity, ܣ ൌ   andݐܮ
 the value of the gap capacitance. Furthermore ߱ܥ ൌ ߨʹ ݂, 
where ݂ is the mechanical resonance frequency of the 
resonator, and ܿଷଷ is the stiffness coefficient of the resonator 
material in the direction of propagation of the elastic waves. 

The values of ܴଵ and ܴଶ depend on the energy losses in 
the resonator, that is, on its mechanical Q. Note that (1) 
imposes a constraint on the product ܴଵܴଶ. Consequently the 
value of only one of those resistors can be chosen 
independently. For example, the measured ratio between the 
input voltage and the short-circuit output current of the SiBAR 
at resonance can be used for this purpose. An approximate but 
sufficiently accurate expression for this ratio can be obtained 
by observing that near the resonant frequency the current 
through the series ܴଶܮଶܥଶ circuit will dominate the current 
through the parallel ܴଵܮଵܥଵ circuit: it is therefore reasonable 
to assume that ݅ଷ ؆ ݅ସ. After some algebraic manipulations, 
the following expression is obtained 
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The expression above shows that the electrical resonant 
frequency ߱ଵ — i.e. the frequency at which ݅௦ achieves its 
maximum value — is lower than the mechanical resonant 
frequency ߱ and is given by 

0201 21 CC−= ωω  (3) 

In particular, since the value of ܥ depends on the DC bias 
voltage ܸ, so does the value of ߱ଵ. This is a well-known 
effect, which has been consistently observed in experimental 
setups [3][5]. Setting ߱ ൌ ߱ଵ in (2) yields the desired 

 
Figure 2.  SibAR equivalent circuit model 
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relationship between the value of ܴଶ and the ݒௗ ݅௦Τ  ratio at 
resonance, namely 
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Note that once the value of ܴଶ has been computed for a 
particular geometry, it can be extrapolated to other geometries 
if the rate of energy loss in the resonator does not change. 

Further improvements to the model can be made by 
solving the elasticity equations more accurately, taking the 
finite thickness of the resonator into account [6]. Because of 
space limitations the calculations are omitted here, but the end 
result is a modified expression for ܥ, while the rest of the 
equivalent circuit model remains unchanged. 

III. NUMERICAL SIMULATIONS 
The equivalent circuit model described in the previous 

section was compared to finite-element simulations of a 
SiBAR performed in ANSYS. A detailed description of the 
ANSYS model is given in [6]. The device used in the 
comparisons was a resonator of dimensions L = 400 µm, W = 
40 µm, th = 20 µm, with a DC bias voltage Vp = 15 V. Fig. 3 
compares the ݏଶଵ parameter obtained from an ANSYS 

simulation of the device with 50 Ω source and load resistances 
with the ݏଶଵ parameter of the model under the same 
conditions. 

A second set of simulations was then performed on the 
same device with various DC polarization voltages, ranging 
from 5 V to 70 V, while keeping the values of the source and 
load resistances fixed at 50 Ω. Fig. 4 shows the electrical 
resonant frequency ଵ݂ ൌ ߱ଵ Τߨʹ  of the device at each value of 
ܸ, obtained both from ANSYS and model simulations. The 

same figure shows also the graph of the relationship between 
ଵ݂ and ܸ given by (3). It can be seen that the simulation 

results track very closely the relationship in (3), which in turn 
matches actual measurements taken on SiBARs, as will be 
shown in Sec. IV. Fig. 5 shows the value of the voltage gain 
௩ܣ ൌ ௨௧ݒ Τݒ  at resonance as a function of ܸ, obtained both 
from ANSYS and model simulations. 

A final set of simulations was performed to evaluate the 
effect of the size of the capacitive gaps on the voltage gain of 
the device. It should be noted that for these simulations the 
values of ܴଵ and ܴଶ were changed assuming an inversely 
proportional relationship to Cg. This assumption stems from 
the fact that ܴଵ and ܴଶ are determined by the mechanical Q of 
the resonator, which is independent of the gap size. Based on 
the expressions in (1), keeping the Q of resonant circuits 

  

      Figure 3.   SiBAR s21 parameter extracted from simulations Figure 4.   SiBAR electrical resonance frequency vs. polarization voltage 

  

Figure 5.   SiBAR voltage gain at resonance vs. polarization voltage Figure 6.   SiBAR voltage gain at resonance vs. capacitive gap size 
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ܴଵܮଵܥଵ and ܴଶܮଶܥଶ constant with the gap size requires the 
resistance values to be inversely proportional to ܥ. The 
results of this last set of simulations obtained from the model 
and from ANSYS are shown in Fig. 6. It can be seen that in all 
cases the graphs in the figures show excellent agreement 
between the two sets of data, a result that clearly supports the 
validity of the model. 

IV. EXPERIMENTAL MODEL VALIDATION 
In addition to finite-element simulations, the SiBAR model 

was validated experimentally against measurements taken on a 
device fabricated using the HARPSS process [2]. The nominal 
dimensions of the device were L = 400 µm, W = 40 µm, th = 
20 µm. The extracted values of the width and gap size were 
W = 40.028 µm and g = 99 nm, respectively. Fig. 7 compares 
the measured resonance frequency of the device with that 
predicted by the model, as a function of the polarization 
voltage ܸ. Fig. 8 shows a similar comparison for the insertion 
loss of the device, also as a function of ܸ. For reference 
purposes, the corresponding values of the motional resistance 
ܴ are also plotted. Finally, the values of the quality factor Q 
of the device, both measured and predicted by the model, are 
plotted versus ܸ in Fig. 9. Although the agreement is not as 
good as in the two previous figures, it can be seen that the 

model tracks with good accuracy the drop in Q with the 
increase in ܸ without introducing an artificial additional 
resistance, which is instead needed in simpler, empirically 
derived resonator models [5]. 

V. CONCLUSION 
This paper has introduced a parametric equivalent circuit 

model for SiBARs that is derived directly from the equations 
governing the electromechanical behavior of the device. 
Consequently the values of most of the components in the 
model can be computed analytically, based on the dimensions 
of the resonator and the properties of the material. The only 
model parameters that cannot be determined in this way are 
the resistance values, which are tied to energy losses in the 
device. Simulation results show that the performance 
parameters extracted from the model are in excellent 
agreement with those obtained both from finite-element 
analysis of the device and from actual measurements. Thus the 
model can be profitably used in the design of complex mixed-
technology circuits that include SiBARs among their 
components, such as VHF oscillators. 
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Figure 7.   SiBAR resonance frequency predicted by the model 
compared to measured values 

 

Figure 8.   Left axis: SiBAR insertion loss predicted by the model 
compared to measured values. Right axis: SiBAR motional 

resistance 

 

Figure 9.   SiBAR quality factor Q predicted by the model 
compared to measured values 

0 5 10 15
104.436

104.438

104.44

104.442

104.444

104.446

104.448

Vp (V)

f re
s (M

H
z)

meas.
model

0 5 10 15
70

60

50

40

30

20

10

Vp (V)

In
s.

 lo
ss

 (d
B

)

0 5 10 15
102

103

104

105

R
m

(Ω
)

IL (meas.)
IL (model)
Rm

0 5 10 15
3.5

4

4.5

5

5.5

6
x 104

Vp (V)

Q

meas.
model

130


	Compact Parametric Model of Capacitive BAW Resonators
	G. Casinovi, A. K. Samarao and F. Ayazi
	Abstract
	Copyright Notice





