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Abstract 
This paper introduces a new approach to self-calibration of Coriolis-based vibratory 
gyroscopes that does not require the use of any additional moving parts or a calibration 
stage. Instead, the effect of the Coriolis force on the device is mimicked by the 
application of a rotating excitation to the device drive and sense modes. This calibration 
method is based on the theoretical analysis of an equivalent 2-DOF mass-spring model, 
which can be used to describe the behavior of a variety of MEMS gyroscopes. The 
method is validated both by the results of finite-element simulations and by experimental 
measurement. 
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ABSTRACT 

This paper introduces a new approach to self-
calibration of Coriolis-based vibratory gyroscopes that 
does not require the use of any additional moving parts or 
a calibration stage. Instead, the effect of the Coriolis force 
on the device is mimicked by the application of a rotating 
excitation to the device drive and sense modes. This 
calibration method is based on the theoretical analysis of 
an equivalent 2-DOF mass-spring model, which can be 
used to describe the behavior of a variety of MEMS 
gyroscopes. The method is validated both by the results of 
finite-element simulations and by experimental 
measurement. 
 
INTRODUCTION 

On-chip self-calibration of a gyroscope is a valuable 
feature that can eliminate expensive and time consuming 
mechanical calibration of the device using rate tables and 
address any long term drift of its scale factor.  In recent 
years a number of self-test and self-calibration techniques 
for gyroscopes [1,2] and accelerometers [2,3] have 
appeared in the literature. A common feature to those 
techniques is the incorporation of a mobile platform of 
some sort (e.g. a rotary stage) in the sensor die to perform 
the calibration. In contrast, the approach to self-
calibration of Coriolis-based vibratory gyroscopes 
presented in this paper does not require the use of any 
additional moving parts or calibration stage. Instead, the 
effect of the Coriolis force is mimicked by the application 
of a rotating excitation to the drive and sense resonance 
modes of the device. Specifically, it will be shown that 
under appropriate excitation conditions the Coriolis force 
created by a rotation around the gyroscope axis induces a 
phase shift in the gyroscope vibration pattern — and 
consequently in its output — that is directly proportional 
to the rotation rate Ωz. It will also be shown that the 
application of a rotating excitation to the gyroscope drive 
and sense modes creates a similar phase shift in the device 
output, which is also proportional to the rotation rate of 
the excitation. It follows that a rotating excitation, which 
can be created by a rotating electrostatic field applied to 
the device electrodes, can be substituted for physical 
rotation for calibration purposes. 

This self-calibration method requires a novel sensor 
readout architecture in which both the sense and drive 
modes of the gyroscope are excited at the same time. This 
differs from currently used readout schemes, in which 
only the drive mode is excited. The rotation rate Ωz is read 
out by measuring the phase shift in the device output (e.g. 
the output current at any of the gyro electrodes). 
 
THEORETICAL ANALYSIS 

The self-calibration method presented in this paper is 
based on the analysis of an equivalent 2-DOF mass-spring 
model of vibratory gyroscopes [4]. The analysis that 
follows compares the gyroscope response to the Coriolis 

force caused by rotation to its response to a rotating 
excitation force when the gyroscope remains stationary in 
an inertial reference system. 
 
Gyroscope Response to Coriolis Force 

Assume first that a mode-matched gyroscope (i.e. 
fdrive = fsense = ω0 /2π) rotates around its z-axis (the sensi-
tive axis) at a constant angular velocity Ωz with respect to 
a fixed inertial frame of reference. Excitations that are 90° 
out of phase are applied to the two degenerate resonance 
modes of the device. Then the behavior of the gyroscope, 
modeled by its equivalent 2-DOF mass-spring system, is 
described by the following equations 
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where (q1,q2) are generalized coordinates, ω0 is the 
resonance frequency of the mass-spring systems, Q their 
quality factor, and λ a constant that depends on the 
gyroscope type and on the index of the resonance mode of 
the device [4]. The steady-state solution to this set of 
differential equations is found to be 
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The equations above show that the Coriolis force 
introduces phase delays θ1 and θ2 in the gyroscope 
response. For small values of Ωz, these phase delays are 
directly proportional to Ωz. 

 
Gyroscope Response to Rotating Excitation 

In this second analysis the gyroscope is assumed to 
be fixed in an inertial frame of reference. A sinusoidal 
excitation is applied to the gyroscope in such a way that 
the direction of the excitation rotates in the generalized 
coordinates plane at angular velocity Ωz. As shown in 
Fig. 1, this is equivalent to applying amplitude-modulated 
excitations in the direction of the coordinate axes, which 
correspond to the two resonance modes of the device. 
Under these assumptions the behavior of the gyroscope is 
described by the following set of equations 
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The two differential equations are now decoupled, and 
each can be solved independently of the other. The 
corresponding solutions can be obtained by exploiting the 
trigonometric identities 
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Standard sinusoidal steady-state analysis techniques, 
the details of which are omitted because of space reasons, 
can then be used to obtain expressions for the gyroscope 
response, which is determined by the following transfer 
function 
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Assuming that 0ω<<Ω z , the following approxi-
mate equality holds 
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It can then be shown that the solutions of (4) are given by 
the following expressions 
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 Therefore the application of amplitude-modulated 
excitations to the drive and sense modes of the gyroscope 
induces a phase shift in the modulating envelope of the 
gyroscope response. For small values of Ωz, this phase 
shift is proportional to Ωz through a constant equal to 
(2Q/ω0). Apart from a factor of λ, this is the same 
proportionality constant that relates the phase shift in the 
gyroscope response created by the Coriolis force to the 
rotation rate Ωz (assuming F1 = F2). It follows that a 
rotating excitation can be substituted for physical rotation 

for the purpose of calibrating the gyroscope, because for a 
scope the value of λ depends only on 

the index of the resonance mode of the device. 
given type of gyro

Since the 2-DOF mass-spring model describes the 
behavior of a large class of resonating gyroscopes, the 
results of this analysis are applicable to a wide variety of 
devices, such as disk, ring, hemispherical shell and mode-
matched tuning-fork gyroscopes. 

 
NUMERICAL SIMULATIONS 

The results of the theoretical analysis described in the 
previous section were verified by numerical simulations 
performed on an ANSYS model of a bulk acoustic wave 
(BAW) disk gyroscope of the same type as the one shown 
in Fig. 2 [5,6]. The gyroscope consists of a center-
supported disk structure with capacitively-coupled drive, 
sense and control electrodes. Its mode of operation was 
assumed to be the in-plane resonance mode of index n = 3 
[5] (Fig. 3). This choice of mode of operation allows the 
gyroscope to be fabricated on a (100) silicon wafer, 
because the two degenerate resonance modes with this 
index are spatially 30° apart and therefore have the same 
resonance frequency, despite the anisotropic nature of 
single-crystal silicon. 

A first set of simulations was used to evaluate the 
phase shift in the gyroscope response caused by the 
Coriolis force. In these simulations sinusoidal excitations 
at the resonance frequency of the mode were applied to a 
pair of electrodes aligned with the drive mode. Similar 
excitations of equal amplitude but 90° out of phase were 
applied to the pair of electrodes perpendicular to the first 
pair, which is aligned with the sense mode. The phases of 
the output currents at all the electrodes were recorded at 
eight different rotation rates, ranging from zero to 
2100 °/s. 

Figure 4 shows the changes in the phases of the 

Figure 1: A rotating excitation is equivalent to amplitude-
modulated excitations in the coordinate axial directions. 

 
Figure 2: SEM picture of a disk BAW gyroscope. 
 

 
Figure 3: Drive (left) and sense (right) mode shapes 

 BAW disk gyroscope. of index n = 3 of a
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electrode currents relative to their values at zero rotation 
rate. The theoretical relationship between phase shift and 
rotation rate given in (3) is shown in the figure by a solid 
line (assuming F1 = F2). It can be seen that the change in 
the phase shift in the response is almost identical at all the 
electrodes, and that the values obtained from the 
numerical simulations are in very good agreement with 
those derived from the theoretical analysis using λ = 
2n/(n2+1) = 0.6 [4]. The small differences in the slopes of 
the lines corresponding to different electrodes are due to 
the different DC polarization voltages applied to the 
electrodes in order to match the resonance frequencies of 
the drive and sense modes. 

The gyroscope response to a rotating excitation — in 
this case, a rotating electrostatic field — was evaluated in 
a second set of simulations. In these simulations, 
amplitude-modulated excitations according to the 
expressions given in (4) were applied to the gyroscope 
electrodes aligned with the drive and sense modes. The 
phases of the output currents at all the electrodes were 
recorded at eight different values of the modulating 
angular frequency Ωz, which in this case mimics the 
gyroscope rotation rate. 

Figure 5 shows the changes in the phases of the 
electrode currents relative to their values at Ωz = 0, as well 
as the theoretical relationship given in (6) (solid line). In 
comparing the plots in Fig. 4 with those in Fig. 5, it 
should be kept in mind that the phase shifts at the same 
value of Ωz differ by a factor of λ. When this factor is 
accounted for, the plots in the two figures essentially 
coincide, as shown in Fig. 6. 

In summary, the simulation results confirm the 
relationship predicted by the theoretical analysis between 
the phase shift in the gyroscope response due to the 
Coriolis force and the phase shift created by a rotating 
excitation. 
 
EXPERIMENTAL RESULTS 

To further corroborate the results of both theoretical 
analysis and numerical simulations, measurements were 
taken on a mode-matched tuning-fork gyroscope [7] like 
the one shown in Fig. 7.  This particular gyroscope was 
chosen because a vacuum-packaged device complete with 
control electronics was available for testing. A printed 
circuit board was designed so that the phase shift in the 
device response due to either a Coriolis force or an input 
rotating excitation could be measured. 

To measure the phase shift induced by the application 
of a Coriolis force, an Agilent 4395A network analyzer 
was used to generate an input voltage at the resonance 
frequency of the device (ω0). This signal was applied to 
the drive electrodes corresponding to one of the two 
degenerate resonance modes of the gyroscope (I-mode). 
An on-board phase shifter was used to generate a signal 
90° out of phase with the input that was applied to the pair 
of drive electrodes corresponding to the other resonance 
mode (Q-mode).  Two separate sense channels were used 
to amplify the I and Q output currents, after which the 
phase response was extracted through synchronous 
demodulation. Specifically, the output of the I-mode was 
mixed with the drive signal of the same mode to generate 
the following signal 
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The output and drive signals of the Q-mode were also 
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Figure 4: Simulated phase shift in the BAW disk gyro 
response due to the Coriolis force, measured relative to 
its value at zero rotation rate. The solid line shows the 
theoretical analysis predictions. 
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Figure 5: Simulated phase shift in the BAW disk gyro 
response due to a rotating excitation, measured relative 
to its value at zero rotation rate. The solid line shows the 
theoretical analysis predictions. 
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response due to the Coriolis force and a rotating exci-
tation. The angular velocity of the rotating excitation has 
been rescaled by a factor of (1/λ) with respect to Fig. 5. 

 
Figure 7: SEM view of a mode-matched tuning-fork 
gyro (M2-TFG) [7].  
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CONCLUSIONS mixed in a similar way. Then the high-frequency 
components were eliminated using low-pass filters. 
Assuming that θ1 and θ2 are sufficiently small, the 
remaining DC components are proportional to Ωz through 
the proportionality constants given in (3). A rate table was 
used to provide sinusoidally-varying rotation rates 
ranging from zero to 175 °/s. The corresponding measured 
phase shifts in the gyroscope response are shown in 
Fig. 8. It can be seen that the data points are aligned very 
closely along a straight line, as predicted by the theory. 

The self-calibration method presented in this paper 
relies on a new sensor readout architecture in which two 
degenerate resonance modes of the gyroscope are excited 
at the same time. An analysis of the gyroscope behavior 
based on an equivalent 2-DOF mass-spring model 
predicts that the Coriolis force induces a phase shift in the 
gyroscope response. The analysis also predicts that this 
phase shift is directly related to the phase shift created by 
an excitation that rotates in the plane of the generalized 
coordinates corresponding to the two resonance modes of 
the device. 

A second set of measurements was then performed to 
analyze the gyroscope phase shift response to a rotating 
excitation.  For this purpose, a low-frequency sinusoidal 
signal was applied to the phase shifter to generate in-
phase and quadrature (90° out of phase) components.  
Both signals were independently mixed with a sinusoidal 
signal operating at the resonance frequency of the 
gyroscope to create the amplitude-modulated excitation 
sinusoids used to excite the I and Q drive electrodes, 
according to the expressions in (4).  The output signal of 
each mode was again amplified along independent 
channels, but this time each was passed through a second 
demodulating stage that was needed to remove the 2ω0 
component created by the first demodulating stage.  The 
output signal was filtered and averaged over 500 seconds 
to measure the phase-dependent DC shift resulting from 
the amplitude-modulated I and Q signals.  The 
corresponding measured phase shifts in the gyroscope 
response are shown in Fig. 9. In this case, too, the data 
points are aligned fairly closely along a straight line. 

The very good agreement among theoretical analysis, 
finite-element simulations and experimental 
measurements proves the accuracy of the theoretical 
results and demonstrates that a rotating excitation can be 
substituted for physical rotation for the purpose of 
calibrating or self-testing the gyroscope. 
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