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Abstract 
This paper introduces two newly developed models of capacitive silicon bulk acoustic 
resonators (SiBARs). The first model is analytical and is obtained from an approximate 
solution of the linear elastodynamics equations for the SiBAR geometry. The second is 
numerical and is based on finite-element, multi-physics simulation of both acoustic wave 
propagation in the resonator and electromechanical transduction in the capacitive gaps of 
the device. This latter model makes it possible to compute SiBAR performance 
parameters that cannot be obtained from the analytical model, e.g. the relationship 
between transduction area and insertion loss. Comparisons with measurements taken on a 
set of silicon resonators fabricated using electron-beam lithography show that both 
models can predict the resonant frequencies of SiBARs with a relative error smaller 
than 1%. 
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ABSTRACT 

This paper introduces two newly developed models 
of capacitive silicon bulk acoustic resonators (SiBARs). 
The first model is analytical and is obtained from an 
approximate solution of the linear elastodynamics 
equations for the SiBAR geometry. The second is 
numerical and is based on finite-element, multi-physics 
simulation of both acoustic wave propagation in the 
resonator and electromechanical transduction in the 
capacitive gaps of the device. This latter model makes it 
possible to compute SiBAR performance parameters that 
cannot be obtained from the analytical model, e.g. the 
relationship between transduction area and insertion loss. 
Comparisons with measurements taken on a set of silicon 
resonators fabricated using electron-beam lithography 
show that both models can predict the resonant frequen-
cies of SiBARs with a relative error smaller than 1%. 
 
INTRODUCTION 

Much research activity in recent years has been 
directed at the development of bulk acoustic resonators 
that are compatible with standard integrated circuit 
technologies. In this respect, capacitive resonators 
[1–3] offer a particularly attractive option, since they can 
be made entirely of materials that are used routinely in IC 
fabrication processes, resulting in significant advantages 
in terms of ease of integration and cost savings. 

Disk resonators were among the first examples of 
devices of this type [1], but more recently width-
extensional-mode resonators based on an alternative, 
rectangular-bar geometry were demonstrated [2], [3], 
which are referred to as silicon bulk acoustic resonators, 
or SiBARs. The basic structure of a SiBAR is 
schematically shown in Figure 1: the resonating bar 
element is placed between two electrodes, supported by 
two thin tethers. A DC polarization voltage applied 
between the resonator and the electrodes generates an 
electrostatic field in the capacitive gaps. When an AC 
voltage is applied to the drive electrode, the electrostatic 
force applied to the corresponding face of the resonator 
induces an acoustic wave that propagates through the bar. 

Small changes in the size of the capacitive gap on the 
other side of the device induce a voltage on the sense 
electrode, whose amplitude peaks near the mechanical 
resonant frequencies of the bar. 

SiBARs offer several potential advantages over their 
disk-shaped counterparts, the most important of which is 
that the electrostatic transduction area can be increased 
without changing the main frequency-setting dimension, 
resulting in significantly lower motional resistance while 
maintaining high Q values [3]. 

While the behavior of SiBARs is well understood in 
broad, qualitative terms, a major obstacle to the design of 
high performance devices is a lack of sufficiently accurate 
analytical or numerical models. For example, to the 
authors' best knowledge there is currently no quantitative 
analysis of how exactly the dimensions of a SiBAR affect 
its insertion loss. Even the computation of the resonant 
frequencies is based on approximate formulae that, as will 
be shown in this paper, can be quite inaccurate, especially 
in the case of an anisotropic material such as single-
crystal silicon. 

This paper presents two newly developed SiBAR 
models, one analytical and the other numerical, that are 
significantly more accurate than currently available 
models. The analytical model is obtained from an 
approximate solution to the linear elastodynamics 
equations that satisfies the boundary conditions imposed 
by the SiBAR geometry. The second model is based on 
numerical multi-physics simulations of the device, 
performed in ANSYS. Comparisons with measurements 
taken on a set of devices fabricated using electron-beam 
lithography show that both models can predict the 
resonant frequencies of SiBARs of varying dimensions 
with a relative error of less than 1%. 

 
ANALYTICAL MODEL 

This section presents an analysis of acoustic wave 
propagation in a SiBAR, modeled as a bar of rectangular 
cross-section and made of a single, homogeneous, 
orthotropic material. The objective of this analysis is to 
obtain a quantitative model of the mechanical behavior of 
the resonator, which can then be used to compute the 
values of the resonant frequencies based on the 
resonator’s dimensions and material properties. 

From a mathematical point of view, an acoustic wave 
propagating through the resonator is represented by a 
vector u = [ux, uy, uz]T , describing the displacement of a 
generic point in the device with respect to its position in 
the undeformed structure. In the analysis that follows, the 
x axis corresponds to the direction of the resonator’s 
length (L), the y axis to the direction of its thickness (th), 
and the z axis to the direction of its width (W) . 

To simplify the analysis, the resonator length will be 
assumed to be infinite. Numerical simulation results and 
experimental measurements, presented later in this paper, 
show that this assumption does not result in a significant 
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Figure 1: Structure of a SiBAR. 

978-1-4244-2978-3/09/$25.00 ©2009 IEEE 935



loss of accuracy, provided that the resonator's length is 
sufficiently large compared to the two other dimensions. 

Symmetry considerations following from this 
assumption dictate that the solutions of interest are those 
that are independent of x and have no displacement 
component in the x direction (i.e. ux = 0) . Limiting the 
analysis to sinusoidal steady-state, such solutions can be 
expressed as 
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The expression above is a solution of the linear 
elastodynamics equations if and only if the following 
equation — generally known as the Christoffel equation 
[4] — is satisfied 
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where ρ is the resonator mass density, and c22, c23, c33 
and c44 are stiffness matrix coefficients. 

Equation (2) has non-trivial solutions if and only if 
the determinant of the coefficient matrix is equal to zero, 
which, after some algebraic manipulation, leads to the 
following equation 
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where ζ = (ky /kz)2 and v = ω /kz. For a given value of v, 
there are in general two solutions to (3), regarded as an 
equation in ζ, hence four values of the ratio ky /kz for 
which (2) has non-trivial solutions.  

It is readily observed that the constant term in (3) — 
that is, the term that is independent of ζ — can also be 
written as ))(( 44

2
33

2 cvcv −− ρρ . Let ρ/33cvu =  and 

ρ/44cvl = ; note that ul vv ≤  because 3344 cc ≤ . 

Consequently, if ul vvv ≤≤  the constant term in (3) is 
negative, which means that in this case (3) has two real 
solutions, one positive and one negative. Letting 

2
1 αζ −=  and 2

2 βζ = , the possible values for ky are 

zkjα±  and zkβ± . For each value of ky , the correspond-
ing values of uy0 and uz0 can be obtained from (2). 

By superposition, a generic wave propagating 
through the resonator is a linear combination of four 
waves of the type given in (1), one for each possible value 
of ky /kz. This leads to the following expression for such 
wave 
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where 
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Finally, coefficients A0 and A1 in (4) must be chosen 
so that the wave satisfies traction-free boundary 
conditions on the top and bottom faces of the resonator, 
that is 

2/,0 hyzyyxy ty ±==== σσσ  
where σxy, σyy and σyz are components of the stress tensor. 
After some algebraic manipulation, those conditions lead 
to a homogeneous system of two linear equations in the 
two unknowns A0 and A1, which can have non-trivial 
solutions only if the determinant of the coefficient matrix 
is equal to zero. Making the substitution kz = 2π/λz, where 
λz is the wavelength in the z direction, the condition on the 
determinant yields the following equation 
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where ξ = th /λz. For fixed α and β, this is an equation in ξ 
which has infinitely many solutions, because of the 
periodicity of the sine and cosine terms. The expression 
for u in (4) and the relation between v and ξ derived from 
(5) are valid only for ul vvv ≤≤ , but the procedure 
outlined above requires only minor modifications to 
handle other ranges of values for v, e.g. uvv ≥ . 

Since α and β depend on v through (3), equations (3) 
and (5), taken together, define a relation between v and ξ. 
Since (5) has multiple solutions, this relation defines a 
function v = v(ξ) that has multiple branches. To each 
point (ξ ,v) that lies on a branch of this function there 
corresponds an acoustic wave that propagates across the 
resonator. 

Figure 2 shows the graph of v(ξ) for single-crystal 
silicon, when the x and z reference axes are aligned with 
the and 〈01̄1〉 and 〈011〉 crystallographic directions, and 
the y axis with the 〈100〉 direction. Only the first four of 
infinitely many branches of v(ξ), or dispersion curves, are 
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Figure 2: Propagation velocity of acoustic waves along 
the 〈011〉 crystallographic direction in a (100) silicon 
wafer (c22 = 165.7, c33 = 194.4, c23 = 63.9, c44 = 79.6 
GPa). 
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shown in the figure. It should be pointed out that those 
curves depend only on the properties of the material, and 
not on the geometry of the resonator. 

Once v(ξ) has been obtained, it is straightforward to 
relate it to the resonant frequencies of a resonator of given 
dimensions. By definition, v = ω /kz and kz = 2π /λz, and 
from these two equalities it follows that fλz = v. 
Moreover, at resonance λz must be an integer submultiple 
of 2W, that is λz = 2W/nz, hence 
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Therefore the relationship between the resonator 
dimensions and its resonant frequencies can be obtained 
from v(ξ) simply by changing the scales on the v and ξ 
axes. 

 
ANSYS MODEL 

To complement to the analytical model described in 
the previous section, we have also developed a SiBAR 
model for the ANSYS simulator that accounts for both the 
finite length of the resonator and the electromechanical 
transduction in the capacitive gaps, which is an integral 
part of the device behavior. 

The orthotropic SOLID95 model is used for the 
resonating bar. Electromechanical transduction is modeled 
with two arrays of TRANS126 elements generated by the 
EMTGEN macro after the bar has been meshed. A 
number of resistors and capacitors model the test setup 
used for resonator testing and characterization [3]. The 
equivalent schematic diagram of the complete ANSYS 
model is shown in Figure 3: Cs and Cd model the gap 
capacitances, Cps and Cpd the parasitic pad capacitances, 
and RS and RL the internal resistances of the test 
instruments. 

Each simulation of the ANSYS model consists of a 
static analysis, which accounts for the effect of the DC 
polarization voltage, followed by a harmonic analysis. 
The simulation results include the values of all the node 
voltages, which makes it possible to generate plots of the 
voltage gain Av = vout / vin over the given range of 
frequencies, as shown in Figure 4. Many parameters 
related to the resonator performance can then be evaluated 
based on the location and magnitude of the peaks in the 
graph of |Av|, including the effects of the resonator 
dimensions, the polarization voltage and the magnitude of 
the capacitive gaps not only on the resonant frequency, 
but also on the insertion loss. 

The selection of the damping ratio used by ANSYS in 
its harmonic analysis (DMPRAT) merits some comment. 
The value of DMPRAT was chosen so that the simulated 
insertion loss of the resonator matched previously 
measured insertion losses of similar devices in the 
frequency range of interest. Consequently, this ANSYS 

model cannot provide reliable a-priori estimates of a 
resonator's insertion loss. On the other hand, once the 
value of DMPRAT has been selected in this way, the 
model can be expected to provide reasonably accurate 
information about how changes in the resonator 
dimensions affect the overall voltage gain Av, provided 
that the resonant frequency does not change much. This is 
based on the assumption that the total rate of energy 
losses remains relatively constant within a relatively 
narrow frequency range. 

To illustrate the model’s capabilities, we present the 
results of the simulations of a set of SiBARs having the 
same length (400 μm) and width (40 μm), but varying 
thickness. The thickness values were chosen so that the 
main resonant peak would fall on the first dispersion 
curve of Figure 2. Figure 5 compares the values of the 
resonant frequency obtained from the ANSYS simulations 
with those predicted by the analytical model: it can be 
seen that the two models are in excellent agreement. 

The plot of the simulated values of |Av| for the same 
set of SiBARs is shown in Figure 6. As can be seen in the 
figure, at first the magnitude of the voltage gain increases 
with the thickness of the device, because of the 
corresponding increase in the capacitive transduction area. 
Beyond a certain point, however, further increases in the 
thickness actually cause the voltage gain to decrease. This 
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Figure 3: Equivalent circuit of the ANSYS model, 
including test setup. 

Figure 4: Simulated frequency response of a 
400μm×40μm×20μm SiBAR. 
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Figure 5: Resonant frequency vs. SiBAR thickness. 
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phenomenon can be explained, at least in part, by a 
decrease in the efficiency of the electrostatic transduction 
in the capacitive gaps due to deterioration of the mode 
shape [5]. 

 
EXPERIMENTAL VERIFICATION 

Both models were validated against measurements 
taken on SiBARs of various dimensions fabricated in 
10 μm thick SOI. Device definition includes sub-micron 
trench formation using DRIE, followed by 3 μm wide 
peripheral trench etching, and HF release. A SEM 
micrograph of a sample device fabricated with this 
process is shown in Figure 7. 

Table 1 compares the values of the resonant 
frequencies predicted by both models with those obtained 
from device measurements. The table shows also the 
relative error incurred when the approximate formula 

ρ
E

W
nf z

2
=  (7) 

is used to estimate the resonant frequency of the SiBAR 
[3]. In all models, the value of W was set equal to the 
measured width of the device, so that the comparison 
would not be affected by process variations. In (7), the 
value of E was set to 169 GPa. 

It is readily seen that the values of the resonant 
frequencies predicted by the models described in this 
paper are substantially more accurate than those given by 
(7), and that the error associated with the latter formula 
grows as the ratio ξ = th /λz = nz th /2W increases. This is 
consistent with the relationship between resonant 
frequency and SiBAR thickness predicted by both models 

(Figures 2 and 5), which show a gradual decrease in the 
resonant frequency of the device as its thickness increases. 

 
CONCLUSIONS 

For the first time, the models described in this paper 
make it possible to perform an accurate quantitative 
analysis of SiBARs, and to predict with a certain degree 
of confidence key parameters such as resonant frequency, 
frequency response and insertion loss. Both models can be 
effective aids in the design of high performance SiBARs. 
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Figure 7: SEM view of a SiBAR fabricated in 10μm thick 
SOI with a capacitive gap of 300 nm. 

Table 1: Comparison with measured data 

Analytical model ANSYS model Equation (7) 
Length 
 (μm) 

Width 
(drawn) 

(μm) 

Width 
(meas.)

(μm) 

Mode 
order 
(nz) 

Res. freq.
(meas.) 
(MHz) 

Freq. 
(MHz) 

Error 
(%) 

Freq. 
(MHz) 

Error 
(%) 

Freq. 
(MHz) 

Error 
(%) 

1 106.308 106.34 0.03 106.23 -0.07 106.5 0.18 310 40 39.97 3 299.082 297.92 -0.40 297.85 -0.41 319.61 6.86 
400 40 39.86 1 106.5 106.6 0.09 106.59 0.08 106.8 0.28 
216 27 26.94 1 157.064 156.84 -0.14 156.86 -0.13 158.1 0.66 
270 27 26.96 1 157.062 156.73 -0.21 156.74 -0.20 157.9 0.53 
240 24 23.91 1 176.452 176.12 -0.19 176.17 -0.16 178.1 0.93 
200 20 19.90 1 210.628 209.97 -0.31 210.06 -0.27 214 1.6 
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Figure 6: Plot of voltage gain vs. SiBAR thickness 
obtained from ANSYS simulations. 
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