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Abstract—The theory of abstract harmonic analysis on com-
mutative groups is used to prove sampling and ergodic theorems
concerning a particular class of finite-power signals, which are
known as weakly almost periodic. The analysis brings to light some
noteworthy differences between finite-energy and finite-power
signal sampling. It is shown that the bandwidth of the Fourier
transform of a weakly almost periodic signal is generally larger
than the bandwidth of the power spectrum of the signal. Conse-
quently, the signal power spectrum by itself does not generally
provide enough information to determine the value of the time-do-
main Nyquist rate, that is, the minimum sampling rate necessary
for exact signal reconstruction in the time-domain. On the other
hand, it is also shown that the minimum sampling rate needed
to obtain alias-free spectral estimates is determined by the band-
width of the power spectrum and, consequently, may be lower
than the time-domain Nyquist rate. Finally, the sampling and
ergodic theorems established in this paper are used in an analysis
of averaged periodogram estimates of the power spectrum of a
weakly almost periodic signal. It is shown that the value of the
time shift between consecutive windows may contribute to the
asymptotic bias of the estimates.

Index Terms—Abstract harmonic analysis, finite-power signals,
sampling theory, spectral estimation.

I. INTRODUCTION

I T is generally acknowledged that the papers by Kotelnikov
[1] and Shannon [2] were the first to draw attention to the

practical importance of the sampling theorem to communica-
tions theory. Research interest in this and other related topics
has grown enormously since, spurred by the introduction of dig-
ital signal processing techniques in an ever growing number of
applications. Advances made in sampling theory since its in-
ception have been reviewed in several publications: see, for in-
stance, [3]–[6].

From a mathematical standpoint, the development of sam-
pling theory has taken place mostly within the framework of

or, less frequently, spaces. The signals involved in many
practical applications, however, are more accurately modeled as
having finite power, rather than finite energy, and finite-power
signals are not elements of for any finite value of . Thus
there is both abstract and practical interest in determining what
parts of the sampling theory of finite-energy signals can be ex-
tended to finite-power signals.
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It is perhaps surprising to find out that, more than fifty years
after the publication of Kotelnikov’s and Shannon’s papers, the
number of sampling theory results that have been mathemat-
ically proven to be applicable to finite-power signals remains
relatively small. As one would expect, the classic sampling the-
orem is one of them. In one of the first formal proofs of that
theorem to be published, pointwise convergence of the Cesàro
means of the sampling expansion was established for a partic-
ular class of bandlimited, finite-power signals [7]. That class es-
sentially coincides with , the Fourier-Stieltjes algebra of

, which will be introduced later in this paper. Subsequently, it
was proven that the sampling expansions of band-limited sig-
nals in actually converge uniformly on compact subsets
of [8]. This property was later found to hold for the sampling
expansions of an even larger class of signals [9].

Other published results that are applicable to finite-power sig-
nals include a modified formulation of the sampling theorem,
whose proof is based on the theory of distributions [10]. This
approach leads to a series expansion whose terms are modified
sinc functions. Finally, a mean-square version of the sampling
theorem is stated in [11] and [12], in the form of the following
equality:

It should be noted, however, that the equality above does not
really amount to a sampling expansion, because the averaging
is performed with respect to , not . It would be more accurate
to describe that equation as an expansion of in terms of shifted
copies of itself.

This paper proves a number of sampling and ergodic theo-
rems for a particular subset of finite-power signals, known as
weakly almost periodic. As shown in this paper, this subset be-
longs to the class of signals that have a discrete power spec-
trum. The sampling and ergodic theorems are then used to es-
tablish further results that have practical implications in the area
of spectral estimation. The paper relies extensively on the theory
of abstract harmonic analysis on commutative groups [4], [13],
and [14], an approach already used to prove a generalized ver-
sion of the classic sampling theorem in the finite-energy case
[13], [15]. The main advantage of such an approach is that both
continuous-time and discrete-time signals can be dealt with in a
single, unified mathematical setting.

0018-9448/$25.00 © 2009 IEEE
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The most important results established in this paper can be
summarized as follows. First, it is shown in Section III that the
Fourier transform and the power spectrum of a weakly almost
periodic signal do not necessarily have the same bandwidth. It
follows that the time-domain Nyquist rate of the signal, that
is, the minimum sampling rate needed to avoid time-domain
aliasing, cannot generally be determined from the signal power
spectrum alone. In fact, the bandwidth of the Fourier transform
of a weakly almost periodic signal may be infinite, even if the
bandwidth of its power spectrum is finite. In contrast, the Fourier
transform and the energy spectrum of a finite-energy signal al-
ways have the same bandwidth.

A second noteworthy result, found in Section VIII, concerns
the minimum sampling rate that is needed to ensure that the
power spectrum of the sequence of samples of a weakly almost
periodic signal is an exact, frequency-scaled copy of the power
spectrum of the original signal. It is shown that this requirement
is met if the sampling rate is larger than twice the highest fre-
quency in the power spectrum of the continuous-time signal.
This means that, if sampling is performed for the purpose of
spectral estimation, then the minimum allowable sampling rate
can be determined from the signal power spectrum.

Another interesting application of the sampling and ergodic
theorems established in this paper is presented in Section IX,
which analyzes the asymptotic behavior of averaged peri-
odogram spectral estimates. It is shown that when the averaged
periodogram is used to estimate the power spectrum of a weakly
almost periodic signal, the value of the time shift between con-
secutive windows may contribute to the asymptotic bias of
the estimates. To avoid this potential problem, the shift must
not exceed the reciprocal of twice the largest frequency in the
power spectrum of the signal.

The results listed above make it clear that the sampling theory
of weakly almost periodic signals (and, by extension, of finite-
power signals) does not duplicate exactly that of finite-energy
signals: while there are many similarities between the two cases,
there are also some significant differences. The import of those
differences is not only theoretical, but also practical, in light of
the ever increasing role that digital techniques play in signal pro-
cessing and, in particular, in spectral estimation. For example,
digital spectrum analyzers use sampling to estimate the power
spectrum of a continuous-time signal, and the results obtained
in Sections VIII and IX are clearly relevant to the operation of
those instruments.

After a section devoted to notation, the paper begins by intro-
ducing weakly almost periodic signals in Section III, and dis-
cussing some of their properties. It is shown that weakly almost
periodic signals always have a discrete power spectrum, and that
they are a superset of the signals that can be expressed as in-
verse Fourier transforms of bounded measures. The classic sam-
pling theorem is then discussed in Section IV. Section V ana-
lyzes signal sampling and reconstruction, when those operations
are regarded as abstract maps between continuous-time and dis-
crete-time signal spaces. Relying on the theoretical framework
established in Section V, the sections that follow derive fur-
ther results that are more application-oriented. For example, it
is shown in Section VI that summation of the sampling
expansion results in a stronger form of convergence.

The ergodic properties of weakly almost periodic signals are
studied in Section VII, while Section VIII examines the rela-
tionship between sampling rate and spectral aliasing. Finally,
Section IX applies the ergodic theorems of Section VII to an
analysis of the averaged periodogram. Specifically, it is shown
that the asymptotic bias of averaged periodogram spectral esti-
mates may be affected by the separation interval between two
consecutive windows, a problem that does not occur in correlo-
gram-based spectral estimation [16].

II. NOTATION

Since this paper deals both with continuous-time and dis-
crete-time signals, an effort has been made to select a notation
that can accommodate either type. Thus the domain of the time
variable is denoted by , with the understanding that
for continuous-time signals, or for discrete-time sig-
nals. This choice is motivated by the fact that both and are
locally compact, commutative topological groups [14]. Accord-
ingly, denotes the integral of with respect to the Haar
measure on . If , this is the usual Lebesgue integral; if

, the Haar measure of is the counting measure, and the
integral is in fact a summation: . In either
case, denotes convolution:

while is the function defined by .
denotes the dual group of [14, p. 6]. Specifically, if

then , while if then
. can be identified with the interval under

the mapping: . As before, denotes the integral
of with respect to the Haar measure on : once again, this is
the ordinary Lebesgue integral if . In the discrete-time
case, is the Lebesgue integral of the periodic function
of period that coincides with on . Consequently, in
the discrete-time case the convolution operation

must be understood to be the periodic convolution of two peri-
odic functions of period .

If is a Banach space, its dual space, and
denotes the value of on . If is a sequence

in , the notation - means that con-
verges to in the weak-* topology of .

, with or , is the Banach space
of bounded, continuous functions on under the norm

. denotes the subspace of
consisting of those functions that vanish at infinity; if

is compact (e.g., ), then . , with
, denotes the space of all measurable functions

that satisfy the condition , where the integral
is evaluated with respect to the Haar measure on .
is a Banach space under the norm .

denotes the set of complex-valued, bounded, regular
Borel measures on . It is possible to define a convolution
operation between two measures [14, p. 13]: the
result, which is still an element of , will be denoted by
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. Equipped with convolution and with the usual vector
space operations, is a complex Banach algebra under
the norm defined by , where is the total
variation of [14], [17]. can be identified with the dual
space of [14, p. 266]. This identification is given by the
relationship

The support of a measure is the smallest closed set
with the following property: for every

measurable set [14, p. 266]. In particular,
whenever . In this paper, the support of will be
denoted by .

A measure is absolutely continuous with respect
to the Haar measure on if there exists such that

for all measurable sets . In such case, the following
equality holds: . The notation will be
used as a shorthand to denote the relationship between an ab-
solutely continuous measure and the corresponding
function . It follows that can be identified
with the set of absolutely continuous measures on . Under this
identification, becomes a norm-closed ideal of
[14, p. 16].

If , its inverse Fourier transform, denoted by
, is the function on defined by

It can be shown that is an injective map from into
[14, pp. 15–17]. The set of all functions that can be ex-

pressed as the inverse Fourier transform of some is
a proper subspace of , which will be denoted by . It
is possible to introduce a norm on by defining

Note that . Under this norm, is a Banach
algebra: it is referred to as the Fourier-Stieltjes algebra of
(see the Appendix).

If denotes that unique measure
such that . Note that this is somewhat different from
the usual definition of the Fourier transform operation, which
yields a function, not a measure. On the other hand, it can be
shown that, if (that is, if , as a measure, is abso-
lutely continuous with respect to the Haar measure on ), then

, where is the usual Fourier transform of

III. WEAKLY ALMOST PERIODIC SIGNALS

Let be a commutative, locally compact, Hausdorff topolog-
ical group. Given , let be the set of all translations
of by elements of

If is relatively compact in the weak topology of , then
is a weakly almost periodic (WAP) function on . The set of

all weakly almost periodic functions on is usually denoted by
WAP ; it can be shown to be a norm-closed subalgebra of

that contains both and [18].
If is relatively compact in the norm topology of , then
is an almost periodic function. By [19, Theorem 7.3, ch. 7],

the set of all almost periodic functions on is another norm-
closed subalgebra of , which will be denoted by .
Since a norm-compact set is also weakly compact, it follows
that WAP . If or , it is not too
difficult to verify that for all real values of .
Consequently, contains the norm closure of the set of
all linear combinations of complex exponentials, and is in fact
equal to it [14, p. 32].

Many of the results presented in this paper rely in an essen-
tial manner on certain mathematical properties of weakly almost
periodic functions, which are summarized in the theorems that
follow. Although those theorems are valid in any topological
group, they are stated here in a form that applies specifically to
the class of functions that is of interest to this paper, namely con-
tinuous-time or discrete-time signals. Accordingly, throughout
the remainder of this paper it should be assumed that or

, unless explicitly stated otherwise.

Theorem 1 ([18]): Let WAP . Then the limit

exists for all , and the function it defines is almost periodic
on , that is, .

In the case of weakly almost periodic functions of two (or
more) variables, averaging the function with respect to one vari-
able at a time in any order always yields the same result, as stated
in the following theorem.

Theorem 2 ([18]): Let WAP , and define

Then WAP and

Theorem 1 implies that, if WAP , the limit

(1)

exists for all . Consequently, each WAP uniquely
determines a corresponding . The next theorem proves that,
if is almost periodic, the converse of this statement also holds.
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Theorem 3: Let: WAP , and let be as in (1). Define

Then contains at most a countable number of points. If
and (i.e., ), then .

Proof: The proof of the countability of is in [18], while
a proof of the second part of the claim is given, for instance, by
[19, Theorem 7.12, ch. 7].

If is weakly almost periodic, but not almost periodic,
no longer determines uniquely. Nevertheless, is intimately
related to the power spectrum of , which is defined in the fol-
lowing way.

Let be any complex-valued, bounded, continuous-time or
discrete-time signal, and assume the following.

• The limit

(2)

exists for all .
• is a continuous function of (if , this condition

is satisfied automatically, because every function on a dis-
crete space is continuous [20, p. 88]).

In such case, will be referred to as the autocorrelation func-
tion of . It was shown by Wiener [21] that is a positive def-
inite function, and a theorem by Bochner [14, p. 19] states that
a continuous, positive definite function on can be expressed
in a unique way as the inverse Fourier transform of a bounded,
positive measure , i.e., . In particular,
this means that . Following Wiener’s definition,
will be referred to as the power spectrum of .

It should be pointed out that, even in the case of well-behaved
(e.g., infinitely differentiable) signals, the limit on the right-hand
side of (2) need not exist for all values of , and if it does, may
not be a continuous function. For example, it is easy to verify
that, if , exists for all values of , but is not
continuous at . On the other hand, it is clear from Theorem
1 that, if WAP , then exists and . In fact,

is completely determined by , as shown by the following
theorem.

Theorem 4 ([18]): Let WAP . Then

and

In particular, .

Noting that , where is
Dirac’s atomic measure located at , leads to the following
characterization of the power spectrum of a weakly almost
periodic signal.

Theorem 5: Let be a weakly almost periodic continuous-
time or discrete-time signal. Then

It follows that , and that the power spectrum of
a weakly almost periodic signal is always discrete.1

Another property of weakly almost periodic signals, which
yields further insight into their power spectra, is that they
can be decomposed in a unique way as the sum of almost
periodic and zero-power components [22]. More precisely, if

WAP , then , where
and is a zero-power signal, that is, satisfies the condi-
tion: . This implies
that , because is a positive definite function, and
therefore [14, p. 18]. It is then
readily verified that the decomposition , together
with the Schwartz inequality

implies that , hence . In other words, the
power spectrum of a weakly almost periodic signal is always
equal to the power spectrum of the almost periodic component
of the signal.

Consider now those signals that are elements of . Re-
call that if and only if there exists such
that . In this paper, will be referred to as the pseu-
dospectrum of , but other terms for can be found in the lit-
erature.2 Since WAP , every has both
a pseudospectrum and a power spectrum. Note that those two
quantities can be quite different, because can be any bounded
measure, while is necessarily discrete. Nevertheless, it is pos-
sible to establish a relationship between the support of and that
of , as explained next.

Let and let be its decomposition
into almost periodic and zero-power components. In this case, it
can be shown that

. This means that
and that , hence . It is also clear from
Theorem 5 that , therefore

, which is the desired relationship.3

In summary, the difference between a weakly almost peri-
odic signal and its almost periodic component is a zero-power
signal, which has no effect on the power spectrum. Therefore
the power spectrum of a weakly almost periodic signal always
coincides with the power spectrum of the almost periodic com-
ponent of the signal. If the signal is an element of , the

1By definition, a measure is discrete if it is the linear combination of a finite
or countable number of Dirac atomic measures [14, p. 266].

2For example, in [8], �� is referred to as the Fourier-Stieltjes spectrum of �.
3See [23, eq. (17)], where an alternate proof of this relationship is given, based

on the theory of distributions. In that equation, however, the direction of the
inclusion is reversed, presumably because of a typographical error. This can be
ascertained from the Proof of Theorem 6 in the same reference, which makes it
clear what the correct direction of the inclusion is.
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support of its power spectrum is a subset of the support of its
pseudospectrum and, in general, this is a proper inclusion. This
means that the bandwidth of the power spectrum can be strictly
smaller than the bandwidth of the pseudospectrum. This cannot
happen, however, if the signal is known to be almost periodic:
in such case , and therefore the two band-
widths must be the same.

These observations highlight an important difference
between finite-energy and finite-power signals: if is a fi-
nite-energy signal, the support of the energy spectrum of (i.e.,

) always coincides with the support of . This fact must be
taken into account in the development of a sampling theory of
finite-power signals.

IV. CLASSIC SAMPLING THEOREM

This section reviews the sampling theorem in its classic for-
mulation, and shows on examples that it is the bandwidth of
the pseudospectrum, not that of the power spectrum, that de-
termines the minimum sampling rate necessary for an exact re-
construction of the signal. As a matter of notation, throughout
the remainder of this paper will denote the sampling period,

will be the corresponding radian frequency, and
.

A signal is band-limited if
for some finite value of . The classic sampling theorem can
then be stated as follows.

Theorem 6: Let and assume
and . Then

(3)

Moreover, the series converges uniformly to on every bounded
interval of .

Proof: A full proof of this theorem can be found, for in-
stance, in [8]. It suffices to note that every integral with respect
to a measure can also be expressed as a Lebesgue-
Stieltjes integral with respect to a function of bounded vari-
ation on , and viceversa [17, p. 329 ff.]. Thus, if

, there exists a function of bounded variation such that

If , the integral above need only be evalu-
ated between and , which is the expression used in The-
orem 3 of [8]. It is then readily apparent that the claim is equiv-
alent to Theorems 1 and 3 in that reference.

It should be pointed out that almost all the proofs of this the-
orem that have been published over the years rely in an essen-
tial manner on the fact that is the inverse Fourier transform
of a measure (or, equivalently, the Fourier-Stieltjes transform of
a bounded-variation function, as in [8]). In other words, most
proofs of the classic sampling theorem depend on the signal
being an element of . Since WAP , Theorem 5
implies that signals in always have discrete power spectra.
A proof of the sampling theorem that is applicable to a class of

signals larger than is given in [9]. Nevertheless, to the au-
thor’s best knowledge, the exact bounds of the validity of (3)
for signals that are not elements of (e.g., signals with a
continuous power spectrum) remain largely unknown.

Another point worth stressing is that Theorem 6 assumes that
the pseudospectrum of —not its power spectrum—is band-
limited, and that the sampling frequency is higher than twice
the highest frequency in . Of course, this implies that the band-
width of is also limited, but the converse is not necessarily
true. Even if the support of is bounded, it is not generally
true that the highest frequency in is the same as the highest
frequency in . For example, let

It is straightforward to verify that
and , where

if , otherwise
. Obviously the bandwidth of is equal to , while the band-

width of is equal to . Therefore, if ,
choosing the sampling period so that is not sufficient
to guarantee the exact reconstruction of the signal. As another
example, let

The power spectrum of this signal is the same as in the previous
example, but the support of is unbounded, which means that
exact reconstruction of the signal cannot be guaranteed at any
sampling frequency.

The examples above demonstrate that the bandwidths of
and can in fact be different. As explained at the end of

Section III, this is due to the presence of a zero-power compo-
nent in the signal, which affects the Fourier transform of the
signal, but not its power spectrum. This means that, except in
the case of almost periodic signals, the power spectrum does
not provide sufficient information to determine the minimum
sampling rate necessary to avoid time-domain aliasing. On the
other hand, it will be shown in Section VIII that the minimum
sampling rate that is needed to avoid spectral aliasing is indeed
determined by the bandwidth of the power spectrum.

V. SIGNAL SAMPLING AND RECONSTRUCTION

From an abstract point of view, sampling can be regarded as a
map from the space of continuous-time signals into that of dis-
crete-time signals, and it can be shown that the image of
under this map is exactly . Since the Fourier transform sets
up a one-to-one correspondence betweens signals in and
measures in , every linear transformation between
and determines a corresponding map between and

, and viceversa. This observation suggests that measure
theory and, in particular, the properties of transformations be-
tween measure spaces could be usefully exploited to develop a
sampling theory for signals in .

This section is devoted to a theoretical analysis of four maps
that are intimately related to signal sampling and reconstruc-
tion. The maps, denoted by and , are defined below;
their actions on the aforementioned spaces are illustrated by the
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Fig. 1. Map diagram illustrating the actions of �� �� �� and ��.

diagram in Fig. 1. This analysis lays the foundation for the sub-
sequent sections, which study the convergence properties of the
Cesàro means of the sampling series, and shed some light on
how sampling may affect the estimation of the power spectra of
continuous-time signals.

For a fixed sampling period , let denote the mapping be-
tween a continuous-time signal and the sequence of its sam-
ples, denoted by , which is defined by

The starting point for the analysis carried out in this section is
the following theorem.

Theorem ([14, Theorem 2.7.2]): If , then
. More specifically, maps onto .

Shifting to the frequency domain, let be the quotient man
from onto defined by

This quotient map makes it possible to define two additional
maps: the first, denoted by , maps into , while the
second, denoted by , maps into . For notational
convenience, let: . If , then

is defined by

for every measurable subset of . Similarly, if ,
then is defined by

for every measurable subset of .
Loosely speaking, takes a measure on and “wraps it

around” following the way in which maps onto . In
particular, if is concentrated on (i.e., ), then

is an identical copy of projected on . Conversely, takes
a measure on and copies it to , but it does so in a way that
excludes the point , because the image of under is

. This effectively means that is also an identical
copy of , unless . The properties of and that
will be needed later are summarized in the following lemma.

Lemma 1: Let be a measurable function on and a mea-
surable function on such that

where denotes map composition.

a) If , then

and this equality implies .
b) If and for every measurable

set , then

Proof: It is clear from the definition of that
for every set such that , hence
and

Since is a homeomorphism between and
is a measurable map between those two sets, and
on . Then Theorem C in [24, p. 163] (with

) implies that

To prove that , given any with
, define a corresponding function on as .

Clearly, is a measurable function (although not necessarily
continuous on ). Then

and this implies .
Similarly, let be any measurable set such that:

. Then: , and this implies
. Hence

where the second equality follows once again from Theorem C
in [24, p. 163], with: .

Finally, define a map from into as

In the case of a finite-length signal, has the effect of interpo-
lating it with sinc functions, as shown by the following theorem.

Theorem 8: Let be a finite-length discrete-time signal. Then
and

Proof: Since has only a finite number of nonzero values,
it follows that .
Consequently and, by definition
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It is easy to verify that the hypotheses in Lemma 1 are satisfied
by setting and . Therefore

The remainder of this section is devoted to establishing two
important properties of . The first is that, when applied to the
samples of a signal whose pseudospectrum has finite bandwidth,

has the effect of recreating the original signal, provided that
the sampling rate is sufficiently high. This property is expressed
formally by the following theorem.

Theorem 9: Let , and assume that

for every measurable set . Then
a) or, equivalently, ;
b) ;
c) .

Proof: The assumption about implies that

where the second equality follows from Lemma 1, with
and . By the uniqueness of the

Fourier transform, this proves that . To prove b), let
be any measurable subset of . Then

It is easy to verify that , hence

i.e., . Finally

Theorems 8 and 9 by themselves do not guarantee that the
sampling expansion of a band-limited signal converges in any
way to the original signal. In order to reach that conclusion, it
is also necessary to show that the maps involved are continuous

with respect to suitably chosen topologies. This fact is estab-
lished in Theorem 10 below, and the proof of that theorem re-
quires the following lemma.

Lemma 2: Let be a sequence of measures in such
that

-

Let be a closed set such that . Then
.

Proof: This proof is a slight modification of the Proof of
Lemma 3.9 in [25]. Given , there exists such
that and . Let be two dis-
joint open sets such that . By Urysohn’s
lemma, there exists a real-valued function such that

for and for
. Let and . Clearly

and . By assumption, there exists an integer
such that implies

Then

Consequently

Since , it follows that
for , and this completes the proof.

Theorem 10: Let be a sequence of measures in
such that

-

and assume that . Then and

-

Proof: Given an arbitrary , define a corre-
sponding function on , i.e.

Note that is continuous on , but not on , unless
. Since , there exists
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such that the support of is contained in the arc of the
unit circle defined by , that is

Let and let be the arc of the unit circle
defined by

Let be a continuous function on such that
on , and , e.g.

By Lemma 1

Note that

because . Unlike is a continuous function on
, hence

But , because on the support of , and
because: . Therefore

Let denote the support of . Then

But it is clear that . Therefore Lemma 2
above implies that . Hence

and, since is arbitrary, this
proves that - .

To prove the remaining claims, given an arbitrary ,
choose such that and .
Define the following function on :

Note that ; therefore
and: . Then

Hence and, in fact , because
is arbitrary. This and the opposite inequality established in

Lemma 1 imply . Then

The ramifications of the results established in Theorems 9
and 10 are quite broad. As will be shown in the sections that
follow, their usefulness is not limited to the specific topic of
sampling and reconstruction, but extends to other areas, such
as the spectral analysis of signals.

VI. CESÀRO SUMMATION OF SAMPLING EXPANSIONS

The results on sampling and reconstruction obtained above
make it possible to establish additional convergence properties
of the sampling series that go beyond those stated in Theorem 6.
Specifically, it will be shown in this section that Cesàro summa-
tion of the sampling expansion improves its convergence proper-
ties in a significant manner. This mirrors a similar, well-known
result about the summation of Fourier series.

Let denote the th Cesàro mean of the partial sums of the
sampling expansion, that is

where

It is a well-known property of the Cesàro means that, if is
a convergent sequence, so is , and both have the same limit.
It follows immediately that, if the assumptions in Theorem 6 are
satisfied, then

Considerably more, however, can be said about the conver-
gence properties of . As a starting point, note that

It follows from Theorem 8 that , where is the
discrete-time triangular window

(4)
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Apart from a scale factor, this window is the auto-
correlation of the rectangular window. More precisely,

, where

Consequently, and
. Using Parseval’s equality:

one concludes that

By relying on this equality, it is possible to prove the following
lemma.

Lemma 3: Let , and let be the triangular window
defined in (4). Then and or, equiv-
alently, . Furthermore

-

Proof: Note that because
. Consequently , because is an al-

gebra. It is also clear that .
Moreover
and, consequently, .
Then the last claim follows immediately from Lemma 5 in the
Appendix.

The convergence properties of can now be stated as fol-
lows.

Theorem 11: Let and assume
and . Then and

-

Proof: Let . It follows from Lemma 3 above
and Theorem 18 in the Appendix that

-

Note that , because , so that the hy-
potheses of Theorem 9 are satisfied. Furthermore, the support of

is contained in the arc of the unit circle defined by ,
that is

where . Hence . Since
, it is clear that .

Therefore, the hypotheses of Theorem 10 are also satisfied, and

-

Since , it follows once again from
Theorem 18 in the Appendix that

-

Furthermore

and, consequently, . The last
claim is then an immediate consequence of Theorem 17 in the
Appendix.

Note that the results of this theorem are not applicable to
, the sequence of the partial sums of the sampling expan-

sion. In such case, the triangular window would have to be
replaced with the rectangular window in all the previous
derivations, as can be easily verified. But
as , and the argument used in the Proof of Lemma 3
fails.

Theorem 11 makes a stronger statement than Theorem 6, be-
cause it can be shown that the type of convergence established
by Theorem 11 implies uniform convergence on bounded inter-
vals of , but is not implied by it [25, Corollary 1]. This means
that has convergence properties that do not necessarily
hold for . For example, the inequality
(see the Appendix) implies that the Cesàro means of the partial
sums of (3) are uniformly bounded over .

VII. ERGODIC THEOREMS

According to the sampling theorems in Sections IV and VI,
the time-domain Nyquist rate for a signal in — i.e., the
lowest sampling frequency that guarantees exact reconstruction
of the signal from its samples—is determined by the bandwidth
of the pseudospectrum of the signal. As noted earlier, the highest
frequency in the pseudospectrum may be higher than the highest
frequency in the power spectrum, unless the signal is almost pe-
riodic. This observation raises the issue of whether the same
lower bound on the sampling frequency must be maintained
when sampling is used to estimate the signal power spectrum.
Since digital spectrum analyzers estimate power spectra from
signal samples, the answer to this question is not of mere the-
oretical interest, but has also important practical consequences.
Fortunately it turns out that, at least in the case of weakly almost
periodic signals, the minimum sampling rate that is needed to
obtain alias-free spectral estimates is determined by the band-
width of the power spectrum, not that of the pseudospectrum.

The formal proof of this fact, which will be given in
Section VIII, relies on the ergodic theorems stated below.
Another practical application of the theorems of this sec-
tion, which concerns the asymptotic behavior of the spectral
estimates obtained from the averaged periodogram, will be
discussed in Section IX. It should be noted that the classic
ergodic theorems of Birkhoff and Von Neumann are valid in

for [26], and cannot therefore be applied to
WAP .

The first two theorems that follow contain references to the
closed convex hull of a set. Recall that, if is a subset of a
Banach space, its closed convex hull, denoted by , is de-
fined as the norm closure of the set of convex combinations of
elements of [27, p. 414].
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Theorem 12: Let be an invertible linear operator on a Ba-
nach space such that

for some . For , define

and let . If is weakly compact in ,
the sequence converges in norm to a point :

Moreover is a fixed point for , that is .
Proof: This theorem is a simplified version of [28, The-

orem 24.13, p. 355], specialized to the case in which the group
acting on is .

A crucial assumption for the validity of this generic ergodic
theorem is that the closed convex hull of should be com-
pact in the weak topology of . It turns out that this condition
is always satisfied when is a weakly almost periodic function,
and is a translation operator. Therefore the following theorem
is essentially a special case of Theorem 12. It should be noted
that in this theorem is not restricted to being or .

Theorem 13: Let be a commutative topological group, and
. Let be the translation operator on WAP , defined

by

WAP

Then for every WAP the sequence converges
in norm to an element WAP , that is

Moreover, is a periodic function of period .
Proof: It is clear that is a translation operator for all

values of , and therefore: . By definition, for a given
WAP the set: is relatively compact

in the weak topology of WAP . As a consequence of the
Krein-S̆mulian theorem [27, p. 434],

is also weakly compact. The claim is then a straightforward
consequence of Theorem 12, when one notes that is
equivalent to . An alternate proof
of this theorem can be obtained by relying on Theorem 5.1 in
[18].

Theorem 13 and the next lemma lay the foundation for the
main result of this section, which is stated in Theorem 14 below.

Lemma 4: Let WAP , and define

If and , then
.

Proof: For a fixed value of , Theorem 1 implies that
as a function of . By Theorem 3, it suffices to prove

that, if , then

By Theorem 2

where

Therefore

Assume . By Theorem 5, this means that
, and thus . But then

and, consequently, . This implies ,
which proves the claim.

The next theorem, and the last in this section, is to a large
extent a special case of Theorem 13. Essentially it implies that
the integral in (2) that defines the autocorrelation of a signal can
be replaced, under certain circumstances, by an infinite series.
This fact has several notable consequences: for example, it will
be used in Section VIII to prove that the power spectrum of
is a frequency-scaled copy of the power spectrum of , if the
sampling frequency is greater than twice the highest frequency
in . Another, somewhat unexpected consequence of Theorem
14 relates to the properties of the averaged periodogram as a
spectral estimator, and is discussed in Section IX.

Theorem 14: Let WAP , and let be its power spec-
trum. Then there exists WAP such that

(5)

with convergence being uniform on . Moreover, if
and , then

, that is, the limit in (5) is independent of and coincides
with the autocorrelation of . In such case, the autocorrelation
of the samples of equals the samples of the autocorrelation
of , i.e., .

Proof: is a commutative topological group, and
WAP [18]. Let . Then

the existence of WAP such that (5) holds, and
the fact that the limit is uniform on , are a consequence
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of Theorem 13, which also implies that is periodic in
of period : .
Therefore, for every fixed , can be expanded in a
Fourier series with respect to :

Because the limit in (5) is uniform, it follows that

If and , Lemma 4 implies
that for . Hence

In particular, setting in (5) yields

i.e., .

VIII. SAMPLING AND SPECTRAL ESTIMATION

Scientists have been looking for methods to estimate the
power spectrum of a signal for a long time: already before
the end of the 19th century, Schuster suggested using what
are known today as periodogram estimates to detect periodic
patterns in weather phenomena [29]. Today spectral estimation
plays an important role in a wide range of scientific disciplines,
from geology to astronomy to communications, and this ex-
plains why this topic is still the object of active research.

In particular, advances in digital signal processing have
spurred the development of methods that estimate the power
spectrum of a continuous-time signal from a discrete-time
sequence of the signal samples. A tacit assumption underlying
most of those methods is that spectral aliasing can be avoided
if the largest frequency in the power spectrum of the original
signal is lower than half the sampling rate. The objective of
this section is to prove formally that this is indeed a correct as-
sumption, at least in the case of weakly almost periodic signals.
It should be stressed that this conclusion cannot be reached by

relying on either the classic sampling theorem (Theorem 6) or
Theorem 11, both of which assume that the sampling rate is
higher than twice the highest frequency in the pseudospectrum
of the signal. As explained at the end of Section IV, this latter
condition is more restrictive than requiring the sampling rate to
be larger than twice the largest frequency in the power spectrum
of the signal. It should also be noted that, unlike Theorems 6
and 11, the results of this section apply to all weakly almost
periodic signals, and not just to those that are elements of .

Let WAP and, as before, let be the sequence of
the samples of . The issue that must be addressed is whether,
and under what conditions, the power spectrum of is a fre-
quency-scaled copy of the power spectrum of . The answer is
provided by the following theorem, which is a straightforward
consequence of the results obtained in Sections V and VII.

Theorem 15: Let WAP , and assume that
and . Then

Proof: Since satisfies the assumptions
in Theorem 9, hence . On the other hand, Theorem
14 implies that , therefore , and the claim
follows.

Note that is the power spectrum of , while is the
image under of the power spectrum of . Since

, it follows that is a frequency-scaled copy of , as ex-
plained in Section V. Therefore, under the assumptions stated in
Theorem 15, it is possible to estimate the power spectrum of
by estimating the power spectrum of , and many algorithms
have been developed for this purpose [30].

For example, one possible approach is to compute the Fourier
transform of the autocorrelation of finite-length segments of .
More precisely, let

Let be a discrete-time window, that is, a finite-length,
real-valued function satisfying the conditions

and . The Fourier transform of
is generally known as a windowed correlogram estimate of the
power spectrum of . Clearly , and it is
shown in [16] that

In other words, the correlogram estimates converge in the
norm to . Note, however, that is a dis-
crete spectrum, but is not: windowing has a “smearing”
effect on discrete spectra, and each line is transformed into a
copy of , centered at the location of the line. For this reason,
it may be preferable to use other algorithms (e.g., Pisarenko’s
method [30], [31]), which are intended specifically for the es-
timation of discrete spectra, and which do not suffer from this
drawback.
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IX. AVERAGED PERIODOGRAM

The study of weakly almost periodic signals presented in this
paper concludes with another application of the ergodic theo-
rems of the previous sections to spectral estimation. Specifically,
those theorems will be used to analyze the asymptotic behavior
of the averaged periodogram. It is worth stating explicitly that
the results of this section are applicable to both continuous-time

and discrete-time signals, and the notation
should be interpreted accordingly, as explained in Section II.

In its most basic form, a periodogram estimate is, apart from a
scale factor, simply the magnitude squared of the Fourier trans-
form of a finite-length segment of the signal. More precisely, let

where is a (continuous-time or discrete-time) window and
is a scale factor whose value is discussed below. By definition,

is a periodogram estimate of the power spectrum of . If is
a realization of a stationary stochastic process, it can be shown
that the expected value of is

(6)

where denotes the autocorrelation function of the process:
.

The value of is normally chosen so that ,
because this makes an asymptotically unbiased estimator. Its
variance, however, becomes approximately equal to as the
length of increases [32]. In order to alleviate this problem
it is common practice to average periodogram estimates taken
over multiple windows, as described below.

Given and , let . Then

is the averaged periodogram estimate determined by
. Note that here denotes the sepa-

ration interval between two consecutive windows; if is
smaller than the length of , then those windows overlap. Note
also that , because both and are bounded,
and has finite length. It follows from the Plancherel theorem
[14, p. 26] that , that is, and
consequently . It is then straightforward to verify
that the inverse Fourier transform of is

(7)

and that, therefore, the expected value of is still given by
(6). On the other hand, it can be shown that, under certain as-
sumptions, the averaging procedure reduces the variance of the
estimates by a factor that is roughly proportional to [32].
This means that the consistency of the averaged periodogram,
when it is used to estimate the power spectrum of a stochastic
process, increases with the number of signal segments used to
generate the estimate.

The averaged periodogram can also be used to estimate the
power spectrum of a single signal (see, for instance, [33, ch.
4], where this method is referred to as the hopped temporally
smoothed periodogram). It is then natural to ask whether (6)
remains valid if is replaced by , and is the
power spectrum of . Theorem 16 below provides an answer to
this question.4

Theorem 16: Let WAP . Then

where is the function defined in (5). If
and , then

(8)

and, consequently

-

Proof: Note that, for each fixed value of , the integral
on the right-hand side of (7) is taken over a bounded interval
of , because, by definition, has finite length. Since

, Theorem 14 ensures that the integrand converges
uniformly to over that interval. It is
therefore possible to take the limit inside the integral, and the
first claim follows immediately. If and

, then, by Theorem 14, , and
this proves (8). Since , it follows that

. Moreover, is positive definite, since it is obvious
that . Since is also positive–definite and ,
the remaining claim is an immediate consequence of (8) and of
Corollary 1 in the Appendix.

The result of Theorem 16 is somewhat unexpected because
it shows that the separation interval between adjacent windows
has an effect similar to that of a sampling period, even if in this
particular instance no sampling (or downsampling, in the dis-
crete-time case) actually takes place. This means that, in order
to ensure that the averaged periodogram estimates converge to

, the value of should be chosen so that is
greater than twice the highest frequency in the power spectrum
of .

For example, let ; then
and . On the other hand

(9)

If , all the terms in the last summation above are
equal, and

4See also [33, ch. 4, Exercise 2] for a similar result.
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Exploiting the properties of the Fourier transform and the fact
that is an even, real-valued function, it is not too difficult to
verify, after some algebraic manipulations, that

This confirms that, if the conditions on stated in Theorem
16 are not satisfied, the accuracy of the averaged periodogram
spectral estimates may be degraded. It is worth noting that, in
contrast, the asymptotic accuracy of the correlogram estimates
is not affected by a similar problem [16].

A closer analysis of the example given above would reveal
that the last term in (9) tends to zero as tends to infinity, un-
less , that is, unless is an integer multiple of

. This observation may lead one to conclude that the con-
straint on stated in Theorem 16 is too restrictive, and that it
is only necessary to ensure that is not an integer multiple
of any of the frequency components of the power spectrum of
the signal. Although this conclusion is mathematically sound, it
would make little practical difference, except in those cases in
which the power spectrum contains a relatively small number
of frequencies, and their values are known with a certain accu-
racy. In fact, if all that is known about the power spectrum of
the signal is a bound on its highest frequency, then the only way
to ensure that is not an integer multiple of any spectral
frequency is to choose its value as stated in Theorem 16.

X. CONCLUSION

The objective of this paper was to formulate a sampling
theory for weakly almost periodic signals, which are a par-
ticular class of finite-power signals. The properties of the
sampling expansions of such signals, stated in Sections IV
through VI, match closely those that are known to hold in
the finite-energy case. Even so, it is apparent from the results
obtained in those sections that sampling theory becomes some-
what more complex when finite-power signals are considered.
This is mainly due to the fact that, while the energy spectrum
and the Fourier transform of a finite-energy signal always have
the same bandwidth, a similar property does not necessarily
hold for the power spectrum and the Fourier transform (i.e.,
the pseudospectrum) of a finite-power signal. In practice, while
the power spectrum can be readily measured with a spectrum
analyzer, no equivalent instruments are currently available to
obtain the pseudospectrum of a signal. Consequently, theoret-
ical results that rely on the properties of the power spectrum,
instead of the pseudospectrum, are of potential practical interest
as well.

For example, a more limited version of the sampling theorem,
useful for the purposes of spectral analysis, has been proved in
Section VIII. It shows that the minimum sampling rate neces-
sary to avoid spectral aliasing is set, in fact, by the largest fre-
quency in the power spectrum of a signal. As another example,
it has been shown that averaged periodogram spectral estimates
can be affected by an error that is related to the interval between
two consecutive windows. This particular result indicates that
the theory developed in this paper could potentially be useful
even in the analysis of some signal processing algorithms that
do not involve sampling.

Some of the results presented in this paper, in particular those
in Sections VII through IX, are related to the approach to signal
analysis described, for instance, in [33], [34], in which statis-
tical parameters are defined as the limits of time averages of a
single signal, rather than ensemble averages of realizations of a
stochastic process. It is straightforward to verify that Theorem
1 and the ergodic theorems of Sections VII–IX, together with
the fact that WAP is an algebra, ensure that the limit of the
time averages of the sum or product of any number of weakly al-
most periodic signals always exists. This implies, for instance,
that every element of WAP is a totally stationary numer-
ical sequence, according to the definition given in [35]. In fact,
every continuous-time or discrete-time weakly almost periodic
signal is almost cyclostationary, as defined in [33, p. 392], be-
cause it can be decomposed as the sum of an almost periodic
and a zero-power component [22].

In conclusion, weakly almost periodic signals have many
useful properties that can be exploited to establish results that are
relevant to both the theory and the application of signal analysis
and processing. The main limitation of working within this par-
ticular mathematical framework is that weakly almost periodic
signals do not include signals with a continuous power spectrum,
as was shown in Section III. Further research is needed to deter-
mine whether and to what extent the results established in this
paper can be extended to a broader class of finite-power signals.

APPENDIX

A. A Theorem in the Dual of a Banach Space

The following theorem establishes a result that is relied upon
in the main body of the paper.

Theorem 17: Let be a sequence in such that
- . Then
. Consequently, if , then

.
Proof: Given an arbitrary , there exists such

that and . There exists also an
integer such that for .
These two inequalities imply that:
for , that is . The remaining
claim is an immediate consequence of the obvious inequality

.

B. Fourier-Stieltjes Algebra

If and , it can be shown that the
convolution exists and is an element of such that

[17, pp. 396–397]. Therefore each
can be identified with a linear, bounded operator on
defined as . The closure in the operator

norm of the set is denoted by . It is
an algebra of operators on , and it is referred to as the
algebra of [36].

It is possible to define a Fourier transform operation
on in the following way. If , define

as
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Since is dense in extends by continuity to
. It can be shown that, extended in this way, is an iso-

metric isomorphism of onto [36, p. 188]. Since
is the dual space of , the dual space of must

be related to ; the concrete form of this relationship will
be established in Theorem 18 below.

Let denote the set of all complex-valued functions that
can be expressed as the inverse Fourier transform of a measure
in . In other words, if

for some . It is straightforward to verify that all the
elements of are bounded, continuous (in fact, uniformly
continuous) functions. Furthermore, convolution of measures in

is mapped by the inverse Fourier transform into a product
of functions in . In other words, if

, then . It follows that
, i.e., is a function algebra.

Each defines a linear, bounded functional on
through the relationship , and

Fubini’s theorem implies that

i.e., . This means that is the
adjoint operator of . It is now straightforward to prove the
following theorem.

Theorem 18: can be identified with the dual space of
, and is an isometric isomorphism of onto

. Moreover, both and are continuous with respect
to the weak-* topologies on and .

Proof: Since is an isometry of onto
is an isometry of

onto the dual space of , and is continuous with respect
to the weak-* topologies on and (see Exer-
cises 5 and 6 in [37, p. 111]). This means, in particular, that

. Since is clearly also an isometry, the
weak-* continuity of follows from the same argument.

It follows from this theorem that each is the inverse
Fourier transform of a unique measure in , which will be
denoted by . Then, by definition , and, by Theorem
18, Note that . Under the

norm, is a Banach algebra: it is referred to as the
Fourier-Stieltjes algebra of [36].

The positive–definite functions in are the inverse
Fourier transforms of positive measures in . Hence, if

is positive definite, then

Since , it follows that .
This equality, however, does not generally hold for elements of

that are not positive definite.

Norm convergence in is equivalent to norm conver-
gence in . More precisely, let , and let
be a sequence in . Then

On the other hand, converges to in the weak-* topology
of if and only if

for every . Weak-* convergence in is closely
related to pointwise convergence, as shown by the following
lemma.

Lemma 5: Let be a sequence in that convergences
pointwise to a function , that is

Assume that is bounded in the norm of , i.e., there
exists such that for all . Then

-

Proof: See Lemma 1 in the Appendix of [16].

The following corollary, which is applicable to positive–defi-
nite functions, is an easy consequence of Lemma 5 and Theorem
18.

Corollary 1: Let be a sequence of positive definite func-
tions in that convergences pointwise to a positive definite
function , that is

Then

-

or, equivalently

-

Proof: Note that , because is a positive
definite function. Hence

Being a convergent sequence, must be bounded, i.e.,
there exists such that for all . It follows
from Lemma 5 that - . The remaining claims
are an immediate consequence of Theorem 18.
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