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Abstract—This paper presents two newly developed models of
capacitive silicon bulk acoustic resonators (SiBARs) characterized
by a rectangular-bar geometry. The first model is derived from
an approximate analytical solution of the linear elastodynamic
equations for a parallelepiped made of an orthotropic material.
This solution, which is recognized to represent a Lamb wave
propagating across the width of the resonator, yields the frequen-
cies and shapes of the resonance modes that typically govern the
operation of SiBARs. The second model is numerical and is based
on a finite-element multiphysics simulation of both acoustic wave
propagation in the resonator and electromechanical transduction
in the capacitive gaps of the device. It is especially useful in
the computation of the SiBAR performance parameters, which
cannot be obtained from the analytical model, e.g., the relationship
between the transduction area and the insertion loss. Comparisons
with the measurements taken on a set of silicon resonators fabri-
cated using electron-beam lithography show that both models can
predict the resonance frequencies of SiBARs with a relative error,
which, in most cases, is significantly smaller than 1%. [2009-0249]

Index Terms—Computer-aided analysis, microresonators,
modeling, simulation.

I. INTRODUCTION

MUCH RESEARCH activity in recent years has been
directed at the development of bulk acoustic resonators

(BARs) that are fully compatible with standard integrated cir-
cuit technologies. In this respect, capacitively transduced air-
gap resonators [1]–[10] offer a particularly attractive option
since they can be made entirely of materials that are used
routinely in IC fabrication processes, resulting in significant
advantages in terms of ease of integration and cost savings.
Another useful feature of these resonators is that their polar-
ization voltage can be used for several purposes such as making
fine changes in their resonance frequency or turning them into
narrow-band mixers or turning them on and off [9]. They can
be fabricated in a single high-quality material such as a single-
crystal silicon, thus eliminating the interfacial losses that beset
composite structures. Furthermore, recent experimental results
have shown that anchor losses can also be mitigated substan-
tially by a careful design of the resonator geometry [11]. This
makes it possible to attain very high quality factors, potentially
limited only by the intrinsic losses of the material [12].

Manuscript received October 14, 2009; revised April 7, 2010; accepted
April 24, 2010. Date of publication June 21, 2010; date of current version
July 30, 2010. This work was supported in part by DARPA under the Analog
Spectral Processors program. Subject Editor C. Nguyen.

The authors are with the School of Electrical and Computer Engineer-
ing, Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:
giorgio.casinovi@ece.gatech.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JMEMS.2010.2050862

Fig. 1. Structure of a SiBAR device.

Fig. 2. (Left) Top and (right) cross-sectional views of a SiBAR.

Disk resonators were among the first examples of devices
of this type [1]–[7], but more recently, air-gap capacitive res-
onators that are based on an alternative rectangular-bar geome-
try were demonstrated [8]–[10]. In this paper, they will simply
be referred to as silicon BARs (SiBARs). The basic structure
of such devices is shown in Figs. 1 and 2. The resonator
proper is placed between two electrodes, supported by two thin
tethers. The dc polarization voltage that is applied between
the resonator and the electrodes generates an electrostatic field
in the capacitive gaps. When an ac voltage is applied to the
drive electrode, the pressure that is applied to the face of the
resonator changes accordingly and induces an elastic wave
that propagates through the bar. Small changes in the size of
the capacitive gap on the other side of the device induce a
current on the sense electrode, whose amplitude peaks near the
mechanical resonance frequencies of the bar.

SiBARs offer several potential advantages over their disk-
shaped counterparts. The most important of which is that
the electrostatic transduction area can be increased without
changing the main frequency-setting dimension, resulting in a
significantly lower motional resistance while maintaining high
Q values [8], [9].

Nevertheless, the equivalent impedance of SiBARs in the
VHF and UHF frequency ranges remains one order of mag-
nitude higher than that attained by piezoelectric resonators. At
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the same time, it is not obvious how further reductions in the
impedance of SiBARs can be achieved because it has been
shown that, in some cases, an increase of the transduction area
can actually result in a larger insertion loss: For instance, this
happens if the SiBAR thickness exceeds certain limits [13]. To
the authors’ best knowledge, there is currently no quantitative
analysis of the relationship between the transduction area and
the insertion loss in SiBARs.

In fact, little is currently known even about the effect of the
dimensions of a SiBAR on its resonance frequencies. An often-
used formula is

f =
nz

2W

√
E

ρ
(1)

where f is the resonance frequency, nz is the order of the
resonance mode, W is the width of the resonator, and E and
ρ are Young’s modulus and the mass density of the material,
respectively. As will be shown in this paper, however, the value
of the resonance frequency that is predicted by (1) can be
severely inaccurate, especially when the material is anisotropic,
and therefore, it is of little use whenever accuracy is important,
e.g., in the design of precision frequency references.

More accurate SiBAR models were first introduced in [14].
This paper presents an extended and more detailed analysis
of those models and shows how they can be used as design
aids to make further improvements in the performance of
SiBARs. In particular, Section II analyzes the elastic wave
propagation in a bar of rectangular cross section, which is the
characteristic geometry of SiBARs. The analysis yields a set
of dispersion curves representing the relationship between the
propagation velocity of elastic waves and the dimensions of
the resonator. Section III describes an alternative approach to
the same problem, based on the Rayleigh–Ritz approximation,
which is shown to yield a very similar result. The relationship
obtained in Section II is used in Section IV to compute the
resonance frequency sensitivities to changes in the dimensions
of the resonator. Section V describes the numerical model and
presents the results of the numerical simulations performed in
ANSYS, which will be compared with the analytical model
derived in Section II. It is also shown how the numerical
model can be used to determine the value of the thickness of
the resonator that minimizes the insertion loss of the device.
Finally, in Section VI, both models are validated by comparing
their predictions against the measurements taken on a set of
devices fabricated using e-beam lithography.

II. ANALYTICAL MODEL

For analysis purposes, a SiBAR can be modeled as a par-
allelepiped made of a single homogeneous material. In prin-
ciple, its resonance frequencies can be obtained by finding
the solutions of the linear elastodynamic equations that satisfy
traction-free boundary conditions on all of the faces of the par-
allelepiped. Unfortunately, such solutions cannot be expressed
in closed form using elementary functions, not even if the
material is isotropic [15, p. 223], [16, p. 460]. Consequently,
any analytical model of a SiBAR must necessarily be approxi-

Fig. 3. Reference geometric model of a SiBAR.

mate. This section describes the derivation of one such model,
which yields very accurate estimates of the frequencies of the
resonance modes that are of interest in practical applications of
SiBARs.

With respect to the orthogonal reference system shown in
Fig. 3, the resonator dimension in the x direction will be
referred to as its length (L), the one in the y direction will be
referred to as its thickness (th), and the one in the z direction
will be referred to as its width (W ). For the purposes of the
analysis carried out in this section and in the next, the length
will be assumed to be theoretically infinite. The numerical
simulation results and the experimental measurements, which
will be presented in Sections V and VI, respectively, show
that this assumption leads to reasonably good approximations
of the actual resonance frequencies of a capacitive SiBAR,
provided that the length of the resonator is sufficiently large
compared to the two other dimensions. Furthermore, it will be
assumed that the resonator is made of an orthotropic material
whose stiffness matrix C in the given reference system has the
following structure:

C =

⎡
⎢⎢⎢⎢⎢⎣

c11 c12 c13

c12 c22 c23

c13 c23 c33

c44

c55

c66

⎤
⎥⎥⎥⎥⎥⎦ .

The application of a periodically varying pressure to the faces
of the resonator located at z = ±W/2 creates an elastic wave,
whose propagation is described by the following:

∇ · T = ρ
∂2u
∂t2

(2)

where u = [ux, uy, uz]T is the displacement at a generic point
in the resonator, ρ is the mass density of the material, T is the
stress tensor

T =

⎡
⎣σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

⎤
⎦

and ∇ · T represents the divergence of T[17].
Since the resonator is assumed to be infinitely long, it is

natural to look for solutions that are independent of x and that
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have no displacement component in the x direction (i.e., ux =
0). These conditions, combined with the additional requirement
that u should represent a sinusoidal plane wave, reduce the
possible solutions of (2) to those that can be expressed in the
following way:

u(y, z, t) =

⎡
⎣ 0

uy0

uz0

⎤
⎦ ej(ωt−kyy−kzz).

It is fairly straightforward to verify that the aforementioned
expression solves (2) if and only if the following equation—
generally referred to as the Christoffel equation [17]—is
satisfied:[

c22k
2
y + c44k

2
z − ρω2 (c23 + c44)kykz

(c23 + c44)kykz c44k
2
y + c33k

2
z − ρω2

] [
uy0

uz0

]
= 0.

(3)

Equation (3) has nontrivial solutions if and only if(
c22k

2
y + c44k

2
z − ρω2

) (
c44k

2
y + c33k

2
z − ρω2

)
− [kykz(c23 + c44)]

2 = 0.

By expanding the product terms and dividing through by k4
z , the

aforementioned equation can be rewritten in equivalent form as

c22c44ζ
2 +

[
c2
44 + c22c33 − (c23 + c44)2

− ρ(c22 + c44)v2
]
ζ + ρ2v4

− (c33 + c44)ρv2 + c33c44 = 0 (4)

where ζ = (ky/kz)2 and v = ω/kz . For a given value of v,
there are, in general, two solutions to (4), regarded as an
equation in ζ; hence, there are four values of the ratio ky/kz for
which (3) has nontrivial solutions. For the wave to propagate
in the z direction, kz must be a real number, but ky may be
real or complex, depending on whether the solutions of (4)
are complex or real and, in the latter case, whether they are
positive or negative. Physically, a purely imaginary value of ky

corresponds to a wave of constant amplitude in the y direction
(i.e., across the thickness of the resonator), while a real negative
(positive) value of ky corresponds to a wave whose amplitude
decreases exponentially in the positive (negative) y direction.

It is readily observed that the constant term in (4) (i.e., the
term that is independent of ζ) can also be written as (ρv2 −
c33)(ρv2 − c44). Let vu =

√
c33/ρ and vl =

√
c44/ρ. Note

that vl ≤ vu because c44 ≤ c33. Consequently, if vl ≤ v ≤ vu,
the constant term in (4) is negative, which means that, in this
case, (4) has two real solutions (one positive and one negative).
By letting ζ1 = −α2 and ζ2 = β2, the possible values for ky

are ±jαkz and ±βkz , and for each of them, the corresponding
values of uy0 and uz0 can be obtained from (3). For example, if
ky = jαkz , then one can set

uy0 = jα uz0 =
ρv2 + c22α

2 − c44

c23 + c44

and the corresponding sinusoidal steady-state solution of (2) is
given by

u(y, z, t) =
[

jα

uz0

]
eαkzyej(ωt−kzz)

where the x component of u, which is equal to zero, has been
omitted to simplify the notation. Similarly, if ky = βkz , the
sinusoidal steady-state solution is given by

u(y, z, t) =
[
−uy1

β

]
e−jβkzyej(ωt−kzz)

where

uy1 =
c44β

2 + c33 − ρv2

c23 + c44
.

Solutions that correspond to the other values of ky can simply
be obtained by changing the signs of α and β in the aforemen-
tioned expressions.

The general solution of (2) is given by the linear combination
of the solutions that correspond to the four possible values
of ky . The space of possible solutions can be reduced further
by observing that, in most practical applications, the pressure
on the faces of the resonator that correspond to the planes
z = ±W/2 is applied in a way that is symmetric with respect
to the plane y = 0. This means that the z component of the
displacement must also be symmetric with respect to the same
plane (i.e., uz must satisfy the relationship uz(−y, z, t) =
uz(y, z, t)). Imposing this requirement on u leads to the fol-
lowing solution for (2):

u(y, z, t) = A0

[
jα sinh(αkzy)
uz0 cosh(αkzy)

]
ej(ωt−kzz)

+ A1

[
juy1 sin(βkzy)
β cos(βkzy)

]
ej(ωt−kzz). (5)

This solution represents a symmetric Rayleigh–Lamb wave
propagating in the z direction (i.e., across the width of the
resonator).

Coefficients A0 and A1 in (5) must be chosen so that u
satisfies the traction-free boundary conditions on the top and
bottom faces of the resonator, i.e.,

σxy = σyy = σyz = 0, y = ±th/2 (6)

where

σxy = c66

(
∂ux

∂y
+

∂uy

∂x

)

σyy = c12
∂ux

∂x
+ c22

∂uy

∂y
+ c23

∂uz

∂z

σyz = c44

(
∂uy

∂z
+

∂uz

∂y

)
.

It is immediate to verify that σxy = 0, regardless of the values
of A0 and A1. After some algebraic manipulation, the two
remaining conditions translate into the following system of
equations in unknowns A0 and A1:(

c22α
2 − c23uz0

)
cosh(αkzth/2)A0

+ β(c22uy1 − c23) cos(βkzth/2)A1 = 0
α(1 + uz0) sinh(αkzth/2)A0

+ (uy1 − β2) sin(βkzth/2)A1 = 0.

This system has nontrivial solutions only if the determinant
of the coefficient matrix is equal to zero. By making the
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substitution kz = 2π/λz , where λz is the wavelength in the z
direction, this condition yields the following equation:(
c22α

2 − c23uz0

) (
uy1 − β2

)
cosh(παξ) sin(πβξ)

−αβ(1 + uz0)(c22uy1 − c23) sinh(παξ) cos(πβξ) = 0 (7)

where ξ = th/λz . For fixed α and β, this is an equation in ξ,
which has infinitely many solutions, because of the periodicity
of the sine and cosine terms.

Since α and β depend on v through (4), (4) and (7), taken
together, define implicitly a relationship between v and ξ.
Since (7) has multiple solutions, this relationship defines a
function v = v(ξ) that has multiple branches. In other words,
the relationship between ξ and v is represented by multiple
dispersion curves, and each curve corresponds to a different
mode of propagation of elastic waves across the resonator. For
each point (ξ, v) that lies on one of those curves, it is possible to
choose A0 and A1 so that the solution of (2), which is defined
by (5), satisfies the boundary conditions (6). Thus, each point
on one of the dispersion curves identifies an elastic wave that
propagates across the resonator in the positive z direction.

As mentioned at the beginning of this section, the resonance
modes of the resonator correspond to a combination of elastic
waves propagating in either the positive or negative z direction,
which satisfy the traction-free boundary conditions on all of
the resonator surfaces. This means that, in addition to (6), such
combination of waves would also have to satisfy the boundary
conditions

σxz = σyz = σzz = 0, z = ±W/2.

It is easily verified that any wave of the type given by (5)
satisfies the condition σxz = 0. On the other hand, somewhat
lengthy but straightforward calculations, which are omitted
here, reveal that no combination of a finite number of those
waves can satisfy the remaining two conditions at the same
time. If sin kzW = 0, however, it is possible to combine two
waves of the type in (5), with one propagating in the positive
and the other in the negative z direction, so that the resulting
wave satisfies either the condition σyz = 0 or σzz = 0 (but not
both). This observation suggests that (5) may yield a reasonably
close approximation of a resonance mode when kzW = nzπ
or, equivalently, λz = 2W/nz . This hypothesis is confirmed by
the numerical simulation and experimental results reported in
Sections V and VI, respectively.

The expression for u in (5) and the relationship between v
and ξ derived from (7) are valid only for vl ≤ v ≤ vu, but the
procedure outlined earlier requires only minor modifications to
handle other values of v. If v ≥ vu, both solutions of (4) are
real and positive. Then, ky = ±αkz , or ky = ±βkz , and the
expression for u becomes

u(y, z, t) = A0

[
jα sin(αkzy)
uz0 cos(αkzy)

]
ej(ωt−kzz)

+ A1

[
juy1 sin(βkzy)
β cos(βkzy)

]
ej(ωt−kzz) (8)

where

uz0 =
c22α

2 − ρv2 + c44

c23 + c44

Fig. 4. Wave propagation velocity in an infinitely long (100, 010) SiBAR. The
values of the elastic constants that were used to obtain this graph are c22 =
c33 = 165.7, c23 = 63.9, and c44 = 79.6 GPa [18].

and uy1 is the same as before. In this case, the boundary
conditions in (6) are satisfied by nontrivial values of A0 and
A1 if(
c22α

2 − c23uz0

) (
uy1 − β2

)
cos(παξ) sin(πβξ)

− αβ(1 − uz0)(c22uy1 − c23) sin(παξ) cos(πβξ) = 0. (9)

This equation defines a relationship between ξ and v that is
valid for v ≥ vu. Analogous equations for the case v ≤ vl can
be obtained in a similar manner.

It should be noted that the relationship between ξ and v,
which is defined by (7) and (9), depends only on the properties
of the material and, if the material is not isotropic, on the
direction of the propagation of the wave. It follows that the
propagation velocity of the elastic waves in a SiBAR depends
on the orientation of the resonator with respect to the main
crystallographic axes of silicon. In this paper, such orientation
will be identified, as illustrated by the following example: A
(100, 010) SiBAR will denote a resonator fabricated in a (100)
wafer—which implies that the y axis in Fig. 3 coincides with
the [100] crystallographic axis—and in which the direction of
the propagation of the waves (the z axis in Fig. 3) coincides
with the [010] crystallographic axis.

Figs. 4 and 5 show the dispersion curves representing the
relationship between ξ and v in (100, 010) and (100, 011)
SiBARs, respectively. Only the first four of infinitely many
dispersion curves are shown in the figures. The graph shown in
Fig. 6 corresponds to a hypothetical isotropic material whose
Young’s modulus and Poisson’s ratio correspond to those of
silicon in the [011] direction of the (100) plane. A comparison
of this figure with the previous ones shows clearly that an
isotropic model does not yield a sufficiently accurate descrip-
tion of elastic wave propagation in SiBARs.

As shown in the figures, only the first dispersion curve
approaches a finite value v0 as ξ tends to zero. In the case of an
isotropic material, this value can be computed explicitly, and it
is given by

v0 = 2

√
μ(λ + μ)
ρ(λ + 2μ)

=

√
E

ρ(1 − ν2)
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Fig. 5. Wave propagation velocity in an infinitely long (100, 011) SiBAR. The
values of the elastic constants that were used to obtain this graph are c22 =
165.7, c33 = 194.4, c23 = 63.9, and c44 = 79.6 GPa.

Fig. 6. Wave propagation velocity in an infinitely long rectangular-bar
resonator that is made of a hypothetical isotropic material with E = 169 GPa
and ν = 0.0622.

where λ and μ are the Lamé constants, E is Young’s modulus,
and ν is Poisson’s ratio of the material. For a general orthotropic
material, the equations that define the value of v0 become too
complex to be solved analytically, and the computation must be
performed numerically.

Let αu and βu denote the values of α and β when v = vu.
It is relatively straightforward to verify that αu = 0 and β2

u =
[(c23 + c44)2 + c44(c33 − c44)]/c22c44. It follows that all of
the dispersion curves, except the first one, intersect the line v =
vu when sin πβuξ = 0 (i.e., for ξ = ny/βu, ny = 1, 2, . . .).

The behavior of v(ξ) as v approaches vl is more complex,
and it depends on the sign of the nonzero solution of (4) when
v = vl, which is given by

ζl =
(c23 + c44)2 − c22(c33 − c44)

c22c44
.

Let αl and βl denote the values of α and β when v = vl. If
ζl < 0, which is always the case if the material is isotropic,
then α2

l = −ζl, and βl = 0. After a considerable amount of
algebraic manipulation, it can then be shown that v(ξ) = vl if

aη = tanh(η) (10)

where η = αlπξ and

a =
c22c

2
44(c33 − c44)

[c22(c33 − c44) − c23(c23 + c44)]
2 .

If a < 1, which, once again, is always the case if the material is
isotropic, (10) has exactly one positive solution, which means
that only the first dispersion curve intersects the line v = vl,
while all the others remain above it. If a ≥ 1, (10) has no
positive solutions, and in this case, the inequality v(ξ) > vl

always holds.
If ζl > 0, then αl = 0, and β2

l = ζl. In this case, the condi-
tion v(ξ) = vl translates into the following equation:

aη = tan(η) (11)

where η = βlπξ and a is given by the same expression as
before. Since this equation has infinitely many solutions, all of
the dispersion curves intersect the line v = vl.

Once v(ξ) for a particular material has been computed, it is
straightforward to relate it to the resonance frequencies of a
resonator of given dimensions. By definition, v = ω/kz , and
kz = 2π/λz , and from these two equalities, it follows that
fλz = v. As explained earlier in this section, approximately
resonant conditions are obtained when λz is an integer submul-
tiple of 2W (i.e., λz = 2W/nz); hence,

f =
1
λz

v(ξ) =
nz

2W
v [(nz/2W )th] . (12)

Therefore, the relationship between the resonator dimensions
and its resonance frequencies can be obtained from v(ξ) simply
by changing the scales on the v and ξ axes. Of course, (12)
is not necessarily valid for all possible resonance modes, but
it is valid only for those that satisfy the assumptions made in
the derivation of v(ξ). As stated earlier in this section, those
modes are associated with symmetric Rayleigh–Lamb waves
that propagate across the width of the resonator and that are
characterized by having a zero displacement in the direction
of the resonator length (ux = 0) and displacements that are
independent of x in the other two directions.

It should also be pointed out that the various dispersion
curves indicate only the potential existence of resonance modes.
In other words, given an arbitrary point on one of the dispersion
curves, there is no guarantee that a resonance mode that corre-
sponds to that point actually exists. Even if such mode exists,
it may generate only a small peak or even no peak at all in the
electrical frequency response of the device, for reasons related
to electromechanical transduction in the capacitive gaps that
are explained in more detail in Section V. To the authors’ best
knowledge, all SiBARs that have been fabricated to date operate
on the first dispersion curve: Whether SiBAR operation on the
other curves is possible in practice is still an open question.

In theory, the analysis carried out in this section applies only
to infinitely long resonators. In practice, it yields very good
approximations of the actual resonance frequencies of devices
even with a relatively small length-to-width ratio. This can be
evinced from the numerical simulation results that are reported
in Section V (and specifically in Fig. 16), which show that
the analytical model can predict the resonance frequencies of
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(100, 011) SiBARs having length-to-width ratios ranging from
2 to 12, with a relative error (with respect to the numerical
ANSYS simulations) that is typically on the order of 0.1%
or less. These results are validated by the experimental data
reported in Section VI.

III. RAYLEIGH–RITZ APPROXIMATION

The Rayleigh–Ritz method is often used to obtain approx-
imate values for the resonance frequencies of an elastic body
when it is impossible or impractical to compute the exact
solution to the elastodynamic equations. In its simplest form,
the Rayleigh–Ritz method is based on the fact that, in sinusoidal
steady state and at resonance, a constant amount of energy is
being constantly transformed from potential into kinetic and
back. This principle translates into the equality T = U , where
T and U are phasors representing the kinetic and potential
energies of the body, respectively [19].

In this section, the Rayleigh–Ritz method will be used to
obtain approximate values for the resonance frequencies of
a SiBAR, under the same assumptions as those made in the
previous section. This will serve both to confirm the earlier
derivation and to provide an alternate and somewhat simpler
procedure than the one described in Section II. For simplicity,
the analysis will be limited to the range vl ≤ v ≤ vu, which is
the most likely region of operation for the device.

By assuming a sinusoidal steady state and by using a phasor
notation, the kinetic energy of the resonator that is due to elastic
vibration is given by

T =
1
2

∫
V

ρ
(
|u̇x|2 + |u̇y|2 + |u̇z|2

)
dv

=
ω2

2

∫
V

ρ
(
|ux|2 + |uy|2 + |uz|2

)
dv

where the integral is evaluated over the volume of the resonator.
The elastic potential energy of the resonator can be expressed
in terms of strains and stresses as follows:

U =
1
2

∫
V

∑
p,q={x,y,z}

σpqεpq dv

where εpq denotes the complex conjugate of the strain tensor
component εpq = (∂up/∂q + ∂uq/∂p)/2.

The expressions for T and U given earlier must then be
evaluated using a suitable approximation for the solution of
(2). This is a critical step because it affects directly the accu-
racy of the value of the resonance frequency yielded by the
Rayleigh–Ritz method. Therefore, the goal must be to choose
an expression for u that is sufficiently close to (5)—the exact
solution of (2)—yet easier to obtain. Note that α ≈ 0 for v ≈
vu, and in this case, sinh(αkzy) ≈ αkzy, and cosh(αkzy) ≈ 1.
Hence, a suitable expression for u appears to be the following:

kzu(y, z, t) =
[
0
1

]
ej(ωt−kzz) + A0

[
jkzy

uz0

]
ej(ωt−kzz)

+ A1

[
juy1 sin(βkzy)
β cos(βkzy)

]
ej(ωt−kzz). (13)

To improve the accuracy of this expression, the values of uz0

and uy1 should be chosen so that each term in (13), taken
individually, is a solution of (2) for some values of ω. This
requirement leads to the following expressions:

uz0 =
c23 + c44

c33 − c44

uy1 =
c44β

2 + c33 − γ

c23 + c44

where γ is the smallest eigenvalue of the following matrix:[
c22β

2 + c44 −(c23 + c44)β
−(c23 + c44)β c44β

2 + c33

]
.

Note that the expression for u given in (13) is not necessarily a
solution of (2) because, in general, each term in (13) solves (2)
for a different value of ω.

The values of A0 and A1 should be chosen so that the
boundary conditions in (6) are satisfied. By proceeding as in
Section II, this requirement yields the following system of
equations:

(kzth/2)A0 + (uy1 − β2) sin(βkzth/2)A1 = 0
(c22 − c23uz0)A0 + (c22uy1 − c23)β cos(βkzth/2)A1 = c23.

These conditions still leave one parameter undetermined,
namely, the value of β = ky/kz . One possible way to select
this value is to require cos(kyth/2) = cos(πβξ) = 0, which
yields β = (ny − 1/2)/ξ, where ny = 1, 2, . . ., depending on
what dispersion curve is being approximated.

Once the values of all the parameters in the expression for
u have been computed, T and U can be evaluated from the
expressions given earlier. In this case, several stresses are equal
to zero, and the expression for the potential energy reduces to

U =
1
2

∫
V

(σyyεyy + σzzεzz + 2σyzεyz) dv

=
1
2

∫
V

[
c22|εyy|2 + c23(εyyεzz + εyyεzz)

+ c33|εzz|2 + 4c44|εyz|2
]
dv.

Then, the equality T = U yields

v2 =
ω2

k2
z

=
2U

k2
z

∫
V ρ (|ux|2 + |uy|2 + |uz|2) dv

. (14)

The aforementioned equation can be used to compute the
dispersion curves for those resonance modes that can be reason-
ably approximated by (13). Because of the way in which (13)
was arrived at, those are the modes that satisfy the assumptions
stated in Section II.

Fig. 7 shows the first two dispersion curves for a (100, 010)
SiBAR. For comparison purposes, the corresponding curves
from Fig. 4 are also shown (dashed lines). The same com-
parison for a (100, 011) SiBAR is shown in Fig. 8. It can
be seen that the two methods are in excellent agreement on
the upper portion of the first curve, while some difference is
noticeable on the second dispersion curve, especially at the
beginning. This discrepancy can be taken as an indication that
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Fig. 7. Dispersion curves for a (100, 010) SiBAR obtained from (solid lines)
the Rayleigh–Ritz method and (dashed lines) the method in Section II.

Fig. 8. Dispersion curves for a (100, 011) SiBAR obtained from (solid lines)
the Rayleigh–Ritz method and (dashed lines) the method in Section II.

the equation β = (ny − 1/2)/ξ is not a sufficiently accurate
model of the actual relationship between β and ξ, except on
the first dispersion curve.

IV. FREQUENCY SENSITIVITY TO PROCESS VARIATIONS

Changes in the resonance frequency of a BAR that are
caused by variations in its dimensions, which are unavoidable
in integrated circuit fabrication, are an important issue in many
practical applications. Using the results obtained in Section II, it
is possible to obtain analytical expressions for the sensitivity of
the resonance frequency to changes in the width and thickness
of the resonator. Specifically, it is readily seen from (12) that,
under the assumptions spelled out in Section II, the resonance
frequency depends on W and th only through λz and ξ. Hence,

∂f

∂W
=

df

dλz

dλz

dW
=

2
nz

[
− 1

λ2
z

v(ξ) +
1
λz

dv

dξ

dξ

dλz

]

= − 2
nzλ2

z

[v(ξ) + ξv′(ξ)]

∂f

∂th
=

1
λz

dv

dξ

dξ

dth
=

1
λ2

z

v′(ξ)

Fig. 9. Graphs of (solid line) −[1 + v′(ξ)/v(ξ)] and (dashed line)
v′(ξ)/[2v(ξ)] for the first dispersion curve of a (100, 011) SiBAR.

where v′(ξ) denotes the derivative of v(ξ). Then, the relative
changes in the resonance frequency due to small variations in
W and th are given by(

Δf

f

)
W

≈ 1
f

(
∂f

∂W

)
ΔW = −

(
1 +

v′(ξ)
v(ξ)

)
ΔW

W
(15)

(
Δf

f

)
th

≈ 1
f

(
∂f

∂th

)
Δth = nz

(
v′(ξ)
2v(ξ)

)
Δth
W

. (16)

These equations show that the relative changes in the value
of f are proportional to (ΔW/W ) and (Δth/W ) through
factors that are determined by the ratio v′(ξ)/v(ξ). Of course,
this ratio depends on what dispersion curve the resonator is
operating on. Additionally, the sensitivity of f to changes in the
thickness is proportional to nz , which is the order of the mode
with respect to the direction of propagation. In the particular
case of thin resonators operating on the first dispersion curve,
for which ξ ≈ 0, the aforementioned equations reduce to
(Δf/f)W ≈ −(ΔW/W ) and (Δf/f)th

≈ 0, respectively,
because v′(0) = 0.

For reference purposes, Fig. 9 shows the graphs of −[1 +
v′(ξ)/v(ξ)] and v′(ξ)/[2v(ξ)] for the first dispersion curve of
a (100, 011) SiBAR. As shown in that figure, the magnitude
of both functions is on the order of unity. The corresponding
graphs for a (100, 010) SiBAR look similar, and they are not
shown here for space reasons. Therefore, as a rough approxima-
tion, it can be assumed that the relative changes in the resonance
frequency of a SiBAR that are due to changes in its width and
thickness are approximately on the same order of magnitude as
(ΔW/W ) and (Δth/W ), respectively.

V. FINITE-ELEMENT MODEL

The analytical models described in the preceding sections
rest on a number of simplifying assumptions, most notably on
the resonator being of infinite length. Moreover, those models
describe only the mechanical dynamics of the resonator, leaving
out the electrostatic transduction effect in the capacitive gaps,
which is an integral aspect of the behavior of the device. The
development of an analytical model that includes the transduc-
tion effect and that also accounts for the finite length of the
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Fig. 10. Equivalent circuit of the ANSYS model, including the test setup.

resonator is a very challenging task because of the mathematical
complexities involved. On the other hand, it is relatively easier
to model those effects numerically using multiphysics simula-
tion software. This section describes one such model, developed
using the ANSYS simulator, and presents the simulation results
obtained from it. On the basis of these results, it is possible to
make a preliminary assessment of the accuracy of the analytical
model described in Section II and, in particular, of the effect of
the finite length of the resonator on the value of its resonance
frequency. Additionally, the numerical simulations provide a
way to study other aspects of the performance of the resonator,
e.g., the relationship between the transduction area and the
insertion loss.

Different types of element models that are available in
ANSYS were used to model the various components of the
resonator. The mechanical beam was modeled as an orthotropic
material using the SOLID95 model. The electrostatic transduc-
tion in the capacitive gaps was modeled with two arrays of
TRANS126 elements generated by the EMTGEN macro after
the beam had been meshed. TRANS126 is a transducer element
that uses a simple capacitive model to simulate the interaction
between the electrostatic and mechanical domains. It is suitable
for use both in structural finite-element analysis and in electro-
mechanical circuit simulation. The EMTGEN macro was used
to generate automatically an array of TRANS126 elements
in each of the capacitive gaps. The elements are connected
between nodes on the surface of the silicon beam and a plane
of nodes that represent the fixed electrodes. The equivalent
capacitance of each element is also computed automatically by
the macro, based on the area of the mesh surfaces associated
with the nodes which the element is connected to.

A number of resistors and capacitors were also added to
model the test setup used for resonator testing and character-
ization [10]. The equivalent schematic diagram of the complete
ANSYS model used in the simulations is shown in Fig. 10.
Cs and Cd model the gap capacitances, Cps and Cpd model the
parasitic pad capacitances, and RS and RL model the internal
resistances of the test instruments.

The model was used to simulate the frequency response of
resonators of varying dimensions. Each simulation consisted
of a static analysis, which is needed to account for the effect of
the dc polarization voltage, followed by a harmonic (i.e., a fre-
quency domain) analysis over a certain frequency range. This
particular set of analyses, combined with the inclusion of the
electrostatic gap in the model, provides a more comprehensive
and accurate information about the behavior of the complete
device than what is obtainable from a simple modal analysis.
In particular, the simulation results include the values of all of
the node voltages, which makes it possible to generate plots
of the voltage gain Av = vout/vin over the specified range of

Fig. 11. Resonance frequency versus SiBAR thickness.

frequencies. Many parameters that are related to the resonator
performance can then be evaluated based on the location and
magnitude of the peaks in the graph of |Av|, including the
effects of the resonator dimensions, the polarization voltage,
and the magnitude of the capacitive gaps not only on the
resonance frequency but also on the insertion loss.

Before discussing the results of the simulations, the selection
of one particular parameter in the ANSYS model merits an
additional comment, namely, the value of the damping ratio
used by ANSYS in its harmonic analysis (DMPRAT). This
parameter was used to account for the total energy losses in the
resonator. In the absence of a reliable model for those losses, the
value of DMPRAT was chosen so that the simulated insertion
loss of the resonator would approximately match the previously
measured insertion losses of similar resonators in the frequency
range of interest. Consequently, the ANSYS model described
herein cannot be used to obtain reliable a priori estimates of
the insertion loss of a resonator. On the other hand, the model
can be expected to provide reasonably accurate information, for
example, about how changes in the resonator dimensions affect
the overall voltage gain Av , provided that its resonance fre-
quency does not deviate excessively from the value that is used
to select the value of the damping ratio, in the first place. This is
based on the assumption that the rate of energy losses does not
change dramatically within a relatively narrow frequency range.

The model described earlier was used to simulate a set of
(100, 011) SiBARs having the same length (400 μm) and
width (40 μm) but with varying thicknesses. The values of the
thicknesses were chosen so that the main resonance peak would
fall on the first dispersion curve. Brick meshing was used,
and the mesh size was chosen so that the number of elements
generated would be on the order of a few tens of thousands.

Fig. 11 compares the values of the resonance frequency
obtained from the ANSYS simulations, determined by the
location of the main peak in the output voltage, with those pre-
dicted by the dispersion curves generated by (7). The ANSYS
simulation results are reported only for those devices in which
the peak that corresponds to the resonance mode of interest
could be identified with some certainty. When the device thick-
ness exceeds a certain value (approximately 35 μm for the
examples shown in Fig. 11), the location of the peak (or even



CASINOVI et al.: LAMB WAVES AND RESONANT MODES IN RECTANGULAR-BAR SILICON RESONATORS 835

Fig. 12. Voltage gain versus SiBAR thickness on the first dispersion curve.

Fig. 13. Resonance mode shape of a SiBAR of dimensions 400 μm (L) by
40 μm (W ) by 10 μm (th).

the existence of one) becomes difficult to determine because
the amplitude of the peak becomes progressively smaller (see
Fig. 12), and multiple peaks become visible in the vicinity of the
frequency predicted by (7) (see Fig. 15). These two phenomena
will be discussed in more detail later in this section. It can be
seen that, as long as an identifiable peak in the frequency re-
sponse can be found, the two models are in excellent agreement.
The difference between the computed values of the resonance
frequencies is on the order of a few hundreds of kilohertz.

As indicated previously, the amplitude of the peak in the
output voltage can be used to compute the value of the overall
voltage gain Av at resonance. The plot of the simulated values
of |Av| is shown in Fig. 12. As shown in the figure, at first, the
magnitude of the voltage gain increases with the thickness of
the device due to the corresponding increase in the capacitive
gap transduction area. Beyond a certain point, however, further
increases in the thickness actually cause the voltage gain to
decrease. This phenomenon can be explained, at least in part, by
a decrease in the efficiency of the electrostatic transduction in
the capacitive gaps [13]. More specifically, for relatively small
values of the thickness, the shape of the resonance mode is
almost purely extensional, as shown in Fig. 13. This means that

Fig. 14. Resonance mode shape of a SiBAR of dimensions 400 μm (L) by
40 μm (W ) by 35 μm (th).

the side of the bar that faces the capacitive gap remains almost
flat, causing the changes in the gap capacitance to be essentially
proportional to the changes in the width of the bar.

As the bar thickness increases, the shape of the resonance
mode becomes more complex, and peaks and valleys start to
appear on the face of the resonator that defines the capacitive
gap, as shown in Fig. 14. This evolution in the mode shape
has two consequences: The first is that changes in the res-
onator width do not translate directly into changes in the gap
capacitance, and the efficiency of the electrostatic transduction
decreases. Eventually, this decrease overtakes the gain due to
larger transduction areas, and the overall voltage gain starts to
decrease as well, as shown in Fig. 12. The second consequence
is that the assumption that the displacement in the width di-
rection (uz) is independent of x becomes less valid. Since this
was one of the assumptions that were made at the outset of the
derivation of the analytical model, a degradation in its accuracy
can be expected as the thickness of the SiBAR increases. This
explains why Fig. 11 shows a slight increase in the difference
between the values of the resonance frequencies yielded by the
analytical and numerical models for thickness values larger than
25 μm.

The ANSYS simulations of this particular resonator also
show that, when its thickness exceeds values of about 30 μm,
two peaks become apparent in the vicinity of the frequency
given by (7) (see Fig. 15). This indicates the presence of an
additional resonance mode, which does not belong to the class
of modes analyzed in Section II. The appearance of multiple
resonance modes close to the frequency predicted by (7) seems
to be linked to a simultaneous change of sign in two subex-
pressions of (7), namely, (c22α

2 − c23uz0) and (uy1 − β2). It
is possible to show that both expressions become zero when
v = vc, where vc is defined by

ρv2
c =

c22c33 − c2
23

c22 + c23
.

For v > vc, both expressions are negative, while for v < vc,
they are both positive. From (7), it is readily seen that v = vc
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Fig. 15. Frequency response of a SiBAR of dimensions 400 μm (L) by
40 μm (W ) by 34 μm (th) obtained from the ANSYS simulations, showing
two closeby resonance modes.

when cos πβcξ = 0, i.e., when ξ = ξc = 1/(2βc), where βc is
the value of β that corresponds to vc, which is expressed as

β2
c =

c23 + c33

c23 + c22
.

In summary, the ANSYS simulation results confirm the
existence of resonance modes on the top portion of the first
dispersion curve generated by (7). They also show that those
modes induce a detectable peak in the electrical frequency
response of a capacitive SiBAR and that the amplitude of that
peak initially increases with the thickness of the SiBAR. The
peak amplitude, however, reaches a maximum and then starts
to decrease as the SiBAR thickness increases further and as
the value of ξ approaches ξc. Simultaneously, multiple peaks
start to appear in the vicinity of the frequency predicted by
(7). Thus, from a practical point of view, ξc appears to set
an upper bound on the th/W ratio of a SiBAR. Because of
the high insertion loss and the presence of multiple resonance
peaks, SiBAR operation on the first dispersion curve for values
of ξ exceeding or even approaching ξc does not seem to be
practically possible, unless the efficiency of electromechanical
transduction in the capacitive gaps can be somehow improved.

Note that βc = 1 whenever c22 = c33, and this equality holds
in all isotropic materials and also in single-crystal silicon when
propagation occurs along one of the 〈100〉 crystallographic
axes. In such case, ξc = 1/2, and the corresponding aspect
ratio is th/W = 1/nz . In the case of the propagation along
one of the 〈110〉 axes, ξc = 0.4714, which is equivalent to
th/W = 0.9428/nz . If W = 40 μm, the corresponding upper
bound on the SiBAR thickness is th = 37.7 μm for nz = 1,
which is a value that is in good agreement with the ANSYS
simulations. Note that, if the same SiBAR was to be operated
in the third-order mode (nz = 3), then its maximum thickness
would be 37.7/3 ≈ 12.6 μm.

The ANSYS simulations of SiBARs operating on the second
dispersion curve in Fig. 5 also showed peaks at frequencies
close to those predicted by the analytical model. The amplitude
of those peaks, however, was significantly smaller than that of
the peaks observed on the first dispersion curve, to the point that

Fig. 16. Difference between the simulated and analytical resonance fre-
quencies versus the length-to-width ratio in SiBARs of varying thicknesses
(W = 40 μm).

operation of those devices on the portion of the curve covered
by the simulations would be practically unfeasible. Since the
time needed for numerical simulations increases dramatically
with the dimensions of the resonator, it was impossible to verify
the existence or the amplitude of the resonance peaks on the
dispersion curves beyond the first two.

Finally, a further set of ANSYS simulations was run to
determine the effect of the length of a SiBAR on its resonance
frequency. The simulated SiBARs had a width of 40 μm,
length-to-width ratios ranging from 2 to 12, and thicknesses
of 5, 10, and 20 μm, which span the typical thickness range
of fabricated SiBARs. Fig. 16 shows fA − fm versus L/W ,
where fA is the value of the resonance frequency obtained from
ANSYS modal analysis, while fm is the resonance frequency
computed by the analytical model (which assumes an infinitely
long SiBAR). It can be seen that the relative difference between
the two values is typically on the order of 0.1% or less, with
the maximum being about 160 kHz or 0.16% for a 20-μm-
thick SiBAR, with L/W = 2. A visual examination of the
mode shapes explains why the analytical model remains so
accurate: The basic mathematical assumptions underlying the
model (ux = 0 and uy and uz are independent of x) are still
approximately valid even at low L/W ratios. In other words,
the shape of these resonance modes is almost purely width
extensional, even in the case of relatively short SiBARs.

In summary, the ANSYS model described in this section can
be used to obtain additional information about the behavior
of capacitive BARs, which is not available from the analytical
model of Section II. Taken together, those two models provide
an effective tool that can be used to design and optimize the
performance of this type of resonators: For example, they make
it possible to select the SiBAR thickness so as to minimize the
insertion loss caused by the resonator [20].

VI. EXPERIMENTAL RESULTS

Both the analytical and numerical models, described in
Sections II and V, respectively, were validated against the mea-
surements taken on SiBARs of various dimensions, fabricated
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Fig. 17. SEM view of a SiBAR fabricated in a 10-μm-thick SOI with a
capacitive gap of 300 nm.

using a two-mask process on low-resistivity (100) silicon-on-
insulator (SOI) wafers with a device layer thickness of 10 μm.
The first mask layer, which is a thin layer of thermal oxide,
was defined using electron-beam lithography, using ZEP 520
as the photoresist for submicrometer-wide capacitive trench
patterning. The oxide mask was then patterned in CF4 and H2

plasma.
The residual ZEP layer was removed in oxygen plasma

before silicon etching. A deep reactive ion etching tool (STS
Pegasus) was used in this step to etch and define the resonating
bar. Since the Bosch process was applied in Pegasus, the sample
was cleaned in a Piranha bath, followed by oxygen plasma clean
to remove any polymer residue on the sidewalls of the trenches.
The remaining oxide mask was removed by a short immersion
in a buffered oxide etchant.

The second mask was defined with photolithography to
isolate the electrodes. Shipley resist 1827 was used as the mask
to define the electrodes. The width of the trench patterns around
these electrodes is 3 μm. The trench etching process took place
in an STS inductively coupled plasma etcher, which fits the
purpose of obtaining a lower selectivity and aspect-ratio process
compared to the capacitive trench etching process. Again,
Piranha and oxygen plasma clean were applied to the sample
to remove any polymer residue on the sample surface or inside
the trenches due to polymer passivation in the Bosch process
and photoresist bridging over submicrometer-width trenches.
Both (100, 011) and (100, 010) SiBARs were fabricated on the
same wafer. Scanning electron micrographs (SEMs) of a sample
device are shown in Figs. 17 and 18.

An Agilent E5071C network analyzer was then used to
measure the electrical resonance frequencies of the fabricated
SiBARs. The measured resonance frequencies of various
devices are reported in Table I, together with the values
predicted by the analytical and numerical models and by (1).
The value of W that was used in all calculations was the
actual measured width of the device, so that the comparison
would not be affected by process variations. The values of the
stiffness coefficients used in the analytical and ANSYS models
were taken from the scientific literature. Specifically, c22 =
c33 = 165.7, c23 = 63.9, and c44 = 79.6 GPa were used for

Fig. 18. Detailed SEM view of the area at one end of a SiBAR.

the (100, 010) resonators [18], while an appropriate coordinate
transformation yielded c22 = 165.7, c33 = 194.4, c23 = 63.9,
and c44 = 79.6 GPa for the (100, 011) resonators. In (1), E was
set to the values of Young’s modulus for silicon in the [011] or
[010] directions of the (100) plane (i.e., 169 GPa for the (100,
011) devices and 130 GPa for the (100, 010) devices [18]).

A comparison of the data reported in Table I shows that both
models can predict the resonance frequency of a SiBAR with
an accuracy that, in most cases, is significantly better than 1%.
The close agreement among the three sets of data validates the
assumptions made in the derivation of the analytical model in
Section II. In particular, it confirms that SiBARs, whose length
is dominant compared to the other dimensions, support, among
others, a set of resonance modes that can be analyzed with good
approximation by assuming the length of the resonator to be
infinite. In practice, this means that the resonance frequency of
those modes is, to a large extent, independent of the length of
the resonator. All practical applications of SiBARs that have
appeared in the literature to date rely on this particular set of
modes.

The data in Table I also confirm that (1) should be regarded
as just a first-order approximation of the resonance frequency
of a SiBAR. The accuracy of that approximation decreases as
the ratio ξ = th/λz = nzth/2W increases. This is a result of
the fact that (1) yields a value that is independent of the SiBAR
thickness, while in reality, there is a gradual decrease in the
resonance frequency of the device as its thickness increases,
which is an effect that is correctly predicted by both the
analytical and numerical models.

Finally, Fig. 19 shows the measured and simulated electro-
static tuning characteristics of a 108-MHz SiBAR with 135-nm
capacitive gaps. The measured frequency values were taken
from [10, Fig. 10]. The simulations were performed using the
ANSYS model described in Section V, with the value of the res-
onance frequency being determined by the location of the peak
of the frequency response computed by the model. The value
of the SiBAR width in the model was chosen so that the sim-
ulated resonance frequency at Vp = 10 V matched as closely
as possible the actual measurement and remained fixed as
the value of the polarization voltage was changed. This was
done to make it easier to evaluate the ability of the model
to track the relationship between the resonance frequency and
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TABLE I
COMPARISON BETWEEN THE PREDICTED AND MEASURED SiBAR RESONANCE FREQUENCIES

Fig. 19. Measured and simulated electrostatic tuning characteristics of a
108-MHz SiBAR.

the polarization voltage. As shown in Fig. 19, the agreement
between the simulations and the measurements is very good.
The slight divergence in the two graphs at the higher voltages is
due to the fact that the simulations were based on the nominal
value of the capacitive gap (135 nm), while a least-square fit of
the measured data yields an actual gap size of approximately
151 nm.

VII. CONCLUSION

Quantitatively accurate compact device models are useful
because they shed light on the behavior of the device, in
addition to being valuable design aids. The analysis of SiBARs
presented in this paper, although far from complete, neverthe-
less yields useful qualitative and quantitative information about
the operation of those resonators. For example, it provides a
fairly accurate characterization of the resonance modes that
determine the behavior of SiBARs in practical applications.
If the SiBAR is sufficiently long, the resonance frequencies
of those modes are essentially independent of the length of
the resonator, and they can be calculated with a very good
approximation by assuming an infinitely long device. More-
over, the analysis reveals that the anisotropic characteristics
of the material play a nonnegligible role in determining the
wave propagation velocity and, consequently, the values of the

resonance frequencies. This means that an accurate calculation
of those frequencies cannot be made by assuming the material
to be isotropic.

The finite-element SiBAR model makes it possible to per-
form a more refined analysis and to compute performance
parameters that cannot be obtained from the analytical model,
such as the change in the resonance frequency of the device
due to changes in the polarization voltage or the relationship
between the electrostatic transduction area and the insertion
loss. Taken together, these two models can be effective aids in
the design of high-performance SiBARs.

The results presented in this paper also identify several areas
that warrant further research. One of them is the development
of an analytical model of the insertion loss associated with a
particular resonance mode and, in particular, of the relationship
between the insertion loss and the resonator dimensions. The
analysis carried out in Section II yields a set of dispersion
curves, such as those shown in Figs. 4–6, and each point on any
of those curves is potentially associated with a resonance mode.
While the numerical model of Section V confirms the existence
of those modes, it also reveals that the insertion loss can vary
dramatically between modes that lie on different curves or even
on different sections of the same curve. An analytical model
that is capable of predicting the insertion loss associated with
a given resonance mode would not only be more useful for the
purpose of designing a SiBAR that meets certain performance
objectives, but it would also give some insights into the physical
mechanisms that determine the insertion loss.

It is also apparent from the numerical simulations that
SiBARs support resonance modes other than those analyzed
in Section II. Conceivably, the resonance frequencies of those
modes depend on the length of the resonator, which is a feature
that is potentially useful in applications that require banks of
resonators with slightly different frequencies. For this reason,
it would be of both theoretical and practical interest to develop
a more comprehensive SiBAR analytical model characterizing
those additional modes.

Finally, the simulations seem to suggest that some of the
resonance modes identified by the analytical model may be
unstable and thus incapable of being supported by a physical
resonator. In fact, as explained in Section V, the degradation in
the insertion loss observed when the SiBAR thickness exceeds a
certain threshold may be due, in part, to the fact that the mode is
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approaching the boundary of its stability region. For this reason,
a theoretical analysis of the stability of the resonance modes
identified by the analytical model presented in this paper or by
other more comprehensive models that may be developed in the
future would be useful in determining which modes can actually
exist in a physical resonator and also in evaluating the insertion
loss associated with a particular mode.
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